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1 Introduction

The goal of public key cryptography, according to [2], is for two people (we will call them Alice and Bob)
who can only communicate by a channel that is monitored by an adversary (we will call her Eve) to exchange
secret messages even if they have never met. To meet this goal, a cryptosystem should make it difficult for the
adversary to decrypt messages. Hence, the security of the system is improved if the adversary’s difficulty of
decryption is increased. Quantum computers can decrease the level of security of a cryptosystem by utilizing
extremely fast quantum algorithms. When quantum computers become widely available, cryptosystems that
are currently used, such as RSA and classical and elliptic curve versions of Elgamal, will become outdated
due to quantum algorithms; however, there is currently no polynomial time quantum algorithm to solve the
hard lattice based problems relevant to lattice based cryptography [2]. Because of this, lattice based systems
like NTRU (a public key cryptosystem created by the authors of [2], Jeffrey Hoffstein, Jill Pipher, and Joseph
H. Silverman) are receiving much attention. In the current study, we studied the security of variations on
the NTRU public key cryptosystem.

1.1 NTRU

This section is to remind to reader of some of the relevant details of NTRU. A detailed discussion of the
cryptosystem can be found in [2]. NTRU is based around three polynomial rings:

R =
Z[x]

xN − 1
Rp =

(Z/pZ)[x]

xN − 1
Rq =

(Z/qZ)[x]

xN − 1

where N and p are prime and gcd(N, q) = gcd(p, q) = 1. NTRU also makes use of the ternary polynomial,
a(x) ∈ T (d1, d2), where a(x) has d1 coefficients equal to 1, d2 coefficients equal to −1, and all other coefficients
equal to 0. The cryptosystem has public parameters (N, p, q, d) where N, p, q are as stated, and d is used for
the set of ternary polynomials described above.

1.1.1 Key Creation

Alice chooses the private key to be two polynomials, f and g, such that

f(x) ∈ T (d+ 1, d) g(x) ∈ T (d, d)

and f(x) is invertible in both Rq and Rp. Once Alice finds a suitable f(x), she computes the inverses in each
ring to be Fq(x) and Fp(x). Then the public key is

h(x) = Fq(x) ∗ g(x) in Rq
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1.1.2 Decryption Process

The following definition of the center-lift of a polynomial from [2] will be used in decryption.

Definition. Let a′(x) ∈ Rq. The center-lift of a′(x) to R is the unique polynomial a(x) ∈ R satisfying a(x)

(mod q) = a′(x) with coefficients between −q
2

and
q

2
.

Bob sends Alice an encrypted message, e(x). Once she receives the encrypted message, she will decrypt
as follows:

a′(x) = f(x) ∗ e(x) (mod q)

a(x) = center-lift a′(x)

m(x) = Fp(x) ∗ a(x) (mod p)

where m(x) is the message. If Eve wants to decrypt the message, she needs the private key, f(x), and its
inverse in Rp, Fp. After she finds the private key, Eve’s decryption process is the same as Alice’s. The best
method is as follows. Once the public key h(x) is published, Eve performs the LLL algorithm (first published
in [3]) on the 2N ×2N NTRU Matrix. Candidates for the coefficients of f(x) will be the vectors of length N

on the left side of the LLL basis. Let f̂i(x) be the polynomial with coefficients from the ith vector of length
N returned by the LLL algorithm. Then for each i, Eve must compute

F̂ip(x) = f̂i
−1

(x) in Rp

a′(x) = f̂i(x) ∗ e(x) (mod q)

a(x) = center-lift a′(x)

m̂(x) = F̂ip(x) ∗ a(x) (mod p)

until m̂(x) = m(x).

2 Security of Variations on NTRU

The most common attack on NTRU is to find the private key using the LLL algorithm. Hence, the
security of NTRU is improved if the algorithm takes a longer time to terminate or if the algorithm does not
return the private key. We applied encryption to messages in NTRU to compare Eve’s decryption process
in the following four rings to compare security.

R1 =
Z[x]

xN − 1
R2 =

Z[x]

xN + 1
R3 =

Z[x]

x2n + 1
R4 =

Z[x]

xN + x+ 1

where N is prime. Security was measured in each ring by measuring the average time to termination of the
LLL algorithm, and the percent of trials that LLL returned the private key. The goal was to determine if
some rings yield better security.

2.1 Method

We generated random keys and messages at a variety of public parameter combinations for each trial,
with in depth analysis at N = 31 and 2n = 32. In each trial, the variation of LLL called LLL with deep
insertions was used. Details can be found in [4]. Although this variant takes longer to terminate, it returns
much better bases, which gives Eve a better chance at successfully decrypting a message. Trials were run as
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follows:

1.Choose public parameters and generate random private key and compute the public key

2.Generate a random message and encrypt

3.Create the NTRU matrix with the public key

4.Perform LLL with deep insertions on the NTRU matrix and record running time

5.Attempt decryption with every candidate for the private key returned by LLL with deep insertions

6.Determine if LLL with deep insertions returned the private key

7.Average the LLL with deep insertions running times for each ring

8.Calculate percent of time that LLL with deep insertions returned the private key

2.2 Percent LLL with Deep Insertions Returned Private Key

AtN = 31 and 2n = 32, Figure 1 compares the percent of successful returns of the private key by LLL with
deep insertions in each ring. Let Qi be the percent of private keys returned in Ri. We performed statistical
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Figure 1: percent of time that LLL with deep insertions returned the private key, (f,g)

analysis at the 95% confidence level (α = 0.05) with sample size = 263. To determine statistically significant
differences between the rings, we used the P-value criteria, with P-value being the smallest significance level,
α, at which the null hypothesis can be rejected [1]. We concluded the following: Q4 < Q3 (P = 0.01),
Q4 < Q1 (P = 2.0 ·10−8), Q3 < Q1 (P = 0.02), Q2 < Q1 (P = 7.4 ·10−4). Although it is unclear which ring
LLL with deep insertions is least likely to return the private key, it is less likely to return the private key
in rings R2, R3, R4 than in the original R1. Hence, each of the variant rings could yield improved security
for NTRU since Eve is less likely to find the private key. However, the message was successfully decrypted
in every trial in every ring whether or not the vector used for decryption was equal to the coefficients of
xi ∗ f(x) for some i. We will discuss this in more detail later. Since messages can always be decrypted in
each ring, there does not appear to be an advantage to using R2, R3, orR4 despite the lower return rates of
the private key.
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2.3 LLL with Deep Insertions Time to Termination

At N = 31 and 2n = 32, Figure 2 compares the average time that LLL with deep insertions took to
terminate in each of the rings. Let Ti be the average time that LLL with deep insertions took to terminate
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Figure 2: compares how long LLL with deep insertions took to terminate on average in each ring

in Ri. After performing statistical analysis at the 95% confidence level (α = 0.05) with sample size = 263,
we concluded the following: T4 < T1 (P = 1.7·10−8), T4 < T2 (P = 1.83 ·10−33), T4 < T3 (P = 2.23 ·10−70),
T1 < T2 (P = 5.5 ·10−6), T1 < T3 (P = 1.5·10−15), T2 < T3 (P = 1.7 ·10−4). From these results, it is clear
that rings R2 and R3 yield better security due to the algorithm taking a longer time to terminate. Alice and
Bob have increased security in either of these rings compared the the original R1 because Eve’s best attack
would take a longer time to complete. To show how much better the security is, we measured the average
time to termination at several dimensions and fitted an exponential curve for each ring, which is displayed
in Figure 3. At dimension 200, the average time to termination in each ring is as follows:

R1 : 61 days

R2 : 90 days

R3 : 109 days

R4 : 46 days

This makes the advantages of using R2 or R3 over the original R1 more clear. Alternatively, one could
set a security level (e.g. set the average time to termination of the algorithm to 100 years) and find the
dimension needed in each ring. Lower dimension implies fewer problems with storage space of keys, etc. For
the algorithm to terminate at about 100 years, the following dimensions are needed for each ring:

4



Figure 3: time to termination of LLL with deep insertions curves for each ring

R1 : 274

R2 : 268

R3 : 264

R4 : 279

Although these differences are small, if one wanted greater than 100 years security, the storage saved would
be much greater.

2.4 Conclusion: Which Ring Should be Used?

Answering the question of which ring to use comes down to answering which ring improves security the
most. Although the fact that LLL with deep insertions returns the private key less frequently in some rings
than in the original R1, the fact that the message can still be decrypted implies that security is not improved
in R2, R3, or R4 with respect to return rate of the private key. Hence, we base improved security solely on
increasing the time to termination of LLL with deep insertions. At first glance, it appears that R3 would
improve security the most due to having the longest average time to termination of LLL with deep insertions.
However, due to a comment by Hoffstein et al., there may be security issues in R3 due to x2

n

+ 1 being a
polynomial of nonprime degree [2]. Due to R2 increasing the time to termination of LLL with deep insertions
and not having problems with the degree of the polynomial as in R3, we conclude that using R2 increases
the security of NTRU. It should be noted that if there are security advantages to a lower rate of return of the
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private key, there was no statistically significant difference between R2 and R4, which had the lowest rate
of return of the private key. Thus, if there are unknown security advantages to a lower return rate of the
private key, there is not enough evidence to claim that R4 would yield better security than R2. Therefore,
in either case, R2 should be used to increase the security of the NTRU cryptosystem.

3 Limitations

In depth analysis was performed at N = 31 and 2n = 32. Other values were used only to obtain average
times for the exponential plots in Figure 3. Statistical significance testing was only performed at N = 31 and
2n = 32, so it is possible that one might find different time or return rate differences between the polynomial
rings at different values for N and 2n.

All experiments were performed using the LLL with deep insertions variant of the LLL algorithm. Using
better variants could yield better return rates for each ring. More importantly, if the classical LLL algorithm
was used, time differences at very large dimensions may seem insignificant between the rings since the
classical algorithm runs more quickly than its variants. Future studies should use different variants of the
LLL algorithm since the adversary will be able to use all of them.

4 Future Research

Although there were no clear security advantages to a lower return rate of the private key in the four
polynomial rings studied, this observation raises questions. Future work should study why some rings yield
lower return rate of the private key from the LLL algorithm.

Let f̂ be the closest vector to f that is returned by LLL (i.e. the vector that Eve will use for decryption).

How far does f̂ have to be from f for decryption to fail? That is, what is the minimum value for y where∥∥∥f − f̂∥∥∥ = y

Is there a polynomial ring that can guarantee this value of y at least some of the time? The largest value
for y observed in this study was

√
6 in R4 when N = 31. When the largest difference between any pairs

of coefficients was 1, this means that 6/31 coefficients of f̂(x) were different from f(x), but the message

could still be decrypted using f̂(x). This raises several questions. If vectors not equivalent to xi ∗ f(x)
for some i can be used for decryption purposes, is a brute force search for the private key as impractical
as previously thought? How many possibilities are there for polynomials that can be used for successful

decryption? Future work on NTRU should study the relationship between
∥∥∥f − f̂∥∥∥ and exactly when f̂ can

be used to successfully decrypt a message.
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coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[4] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved practical algorithms and
solving subset sum problems. Mathematical programming, 66(1-3):181–199, 1994.

6


