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Chapter 1

Young Diagrams and Graph Theory

1.1 Partitions and Young Diagrams

Definition 1.1. A partition of n is a sequence of positive integers

λ = [λ1, λ2, . . . , λk]

where λi ≥ λi+1 for i = 1, 2, . . . , k − 1 and
∑k

i=1 λi = n, denoted λ # n. k is called the
length of the partition and is denoted by L(λ) = k.

Example 1.1. Two partitions of 13 are λ = [4, 4, 3, 2] and σ = [6, 2, 2, 2, 1], where
L(λ) = 4 and L(σ) = 5.

Definition 1.2. A Young diagram or a Ferrers diagram of λ of length k is a collection
of empty cells having k left-justified rows with row i containing λi cells for 1 ≤ i ≤ k.

Example 1.2. For λ = [4, 4, 3, 2] # 13, the corresponding Young diagram is

This will be denoted as Y (λ). Notice that the total number of cells is 13.

Example 1.3. For σ = [6, 2, 2, 2, 1] # 13, the corresponding Young diagram is

This will be denoted as Y (σ), again the total number of cells is 13.
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Observe from examples 1.2 and 1.3, there is a one to one correspondence between
n and the number of cells in the Young diagram. We can also look at the conjugate
diagram by flipping the diagram corresponding to λ over its main diagonal, from upper
left to lower right. Suppose λ # n. Then the conjugate of λ is the partition λ∗ whose
jth part is the number of cells in column j of Y (λ). In other words, the jth part of λ∗ is

λ∗

j = |({i | λi ≥ j})| (1.1)

where the cardinality of a set, S, is denoted as |S|. We can also think of Y (λ∗) as the
transpose of Y (λ).

Example 1.4. The partition λ∗ = [5, 4, 1, 1, 1, 1] is the conjugate of the partition λ =
[6, 2, 2, 2, 1]. This can be seen by looking each Young diagram Y (λ) and Y (λ∗) below.

                                             

                 

                 

                

               

)(λY       )( *λY

The length of λ∗ is the maxi{λi}, for 1 ≤ i ≤ k. Thus, L(λ∗) = λ1. The partition λ is
said to be self conjugate if λ = λ∗. Also observe that Y (λ) is symmetric when λ = λ∗.

A Young tableau of a partition λ of n is a Young diagram of shape λ with integers
1, 2, . . . , n bijectively filled in the cells. We denote T λ as a Young tableau of shape λ.

Example 1.5. For λ = [4, 4, 3, 2] # 13, examples of Young tableaux of shape λ are:

=λ
T           =λ

S

1 2 3 4 

5 6 7 8 

9 10 11  

12 13   

1 7 8 12 

10 6 2 3 

4 5 11  

9 13   

For each λ, we can see that the total number of tableaux of shape λ is n!.

Definition 1.3. A Young tableau of shape λ, T λ, is said to be standard if the integers
1, 2, . . . , n are inserted in such a way that each row and each column are strictly increas-
ing.

Example 1.6. For λ = [4, 4, 3, 2] # 13, two examples of standard tableaux are:

=λ
T           =λ

S

1 4 9 10 

2 5 11 13 

3 7 12  

6 8   

1 3 6 9 

2 5 11 12 

4 8 13  

7 10   

Notice that for each standard tableau, the number 1 will always be in the upper left
cell. A useful calculation of a tableau is calculating the trace of partition λ.

2



Definition 1.4. The trace of a partition λ is defined as

tr(λ) = max {i | λi ≥ i} .

The trace of a partition can be seen by its Young diagram; the trace of a partition λ
is equal to the number of cells of the Young diagram of shape λ in the main diagonal.

Example 1.7. For λ = [4, 3, 2, 2, 1], we have that λ1 = 4 ≥ 1, λ2 = 3 ≥ 2, but λ3 = 2 ! 1.
Thus, tr(λ) = 2. We can also look a Young diagram of shape λ that the main diagonal
goes through 2 cells.

1.2 Lattice Paths

Frequently one refers to the relative positions in tableaux. To describe this, we will use
compass directions such as: A cell a is North of cell b if it is in a row above cell b. A cell a
is north of cell b if it is in the same row or a row above cell a. The same convention holds
for the other directions as well as combinations of directions. For example, NorthEast
describes all cells strictly above and to the right.

We will count the number of partitions with at most n parts and no part larger than
m. The Young diagram for such a partition fits, left justified, in a rectangular grid with
m rows and n columns and every left justified diagram inside the grid corresponds to a
partition of the type that we are considering.

Example 1.8. Let n = 9 and m = 4.

x X X X X X X O O

X X X X X X O O O

X X O O O O O O O

O O O O O O O O O

is such a diagram and the partition is λ = [7, 6, 2]

We will defined the vertices of the grid, to be the top corners of each cell. All of the
vertices of the cells in a grid are called a lattice. In the example there are n + 1 = 10
vertices in each row and m + 1 = 5 vertices in each column. Any sequence of horizontal
and vertical moves between vertices is called a lattice path. We are interested in
counting the number of lattice paths from the the most NorthEast vertex in the lattice
to the most SouthWest vertex making only Westward horizontal moves and Southward
vertical moves. How many such lattice paths exist? Each tableau outlines a path from
the NorthEast vertex to the SouthWest vertex and these paths are examples of lattice
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paths. Clearly there is a one-to-one correspondence between Young diagrams and lattices
paths which only use South and West moves.

Each of the lattice paths that we are considering has n moves West and m moves
South. Label each move with a W or S and form a list, by putting them in order. In the ex-
ample, the diagram determines the lattice path which has list WWSWSWWWWSWWS.
The number of lists is the number of ways to label m+n objects (the moves) with n W’s
and m E’s. Therefore the number of possible lattice paths is

(

m + n
m

)

=

(

m + n
n

)

Exercises

1. How many partitions are there with exactly n parts and no part larger than m?

2. How many ways are there to go n blocks west and m blocks south as described in
this section but that the first move must be West?

3. Let A be 10 blocks North and 6 blocks East of B. How many paths are there from
A to B if the path must go through C which is 3 blocks North and 2 blocks East
of B?

4. How many partitions are the that have 12 parts, no part larger than 5 and part 4
is 3?

5. Prove, using Young diagrams, that the number of partitions of n that have all parts
odd is the same as the number of self conjugate partitions (they are equal to their
conjugate)

1.3 Graph Theory

Definition 1.5. A graph G is a set of vertices (nodes) v connected by edges (links) e.
Thus G=(v,e).

Example 1.9. The graph on V = {1, 2, 3, . . . , 7} with E = {(1, 2), (1, 6), (2, 3), (2, 5),
(4, 5), (5, 6)} is shown below

7 5

6

4

2

1 3

We denote V (G) as the vertex set of a graph G and denote its edge set as E(G). The
number of vertices of a graph G is called the order of G and is denoted |G|. We refer
to the graph of order 0 as the trivial graph. For this paper, we are interested in graphs
that are simple, or a graph G where at most one edge may connect any two vertices,
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and non-directed, so that if (a, b) ∈ E then (b, a) ∈ E . The graphs in the remainder
of this paper will also be connected, or there must be a path from any vertex to any
other vertex.

Definition 1.6. The degree of a vertex V, denoted dG(V ), is the number of edges con-
nected to that vertex.

Example 1.10. From the figure in example 1.9, we have |G| = 7 and

dG(1) = 2, dG(2) = 3, dG(3) = 1 = dG(4)

dG(5) = 3, dG(6) = 2, dG(7) = 0

Notice that this graph is neither simple nor connected because of vertex 7. Also observe
that in counting all degrees, every edge is counted twice (once for each vertex it is con-
nected to), thus

1

2

∑

v∈V

dG(V ) = |E| = the total number of edges

Definition 1.7. If a connected graph G has k vertices and degrees d1 ≥ d2 ≥ . . . ≥ dk > 0,
then the degree sequence of G is d(G) = (d1, d2, . . . , dk).

Notice we are not necessarily assuming that di = d(vi) and clearly, the degree sequence
is unique for every graph.

Example 1.11. The following graph has degree sequence d(G) = (3, 3, 2, 2, 2, 1, 1)

5

2

7

4 6

1

3

Observe that each degree sequence can be viewed as a partition and has an associated
Young diagram, Y (G), of shape λ = d(G). For example, the degree sequence from the
last example d(G) = (3, 3, 2, 2, 2, 1, 1) , can be represented as Y (G):

There may be more than one graph associated with a Young diagram. Hence, the
relationship between a graph and its Young diagram is not one to one.

Example 1.12. Graphs G1 and G2 have the same degree sequence, so their associated
Young diagrams are the same. However, G1 is not isomorphic to G2 since G1 has one
three cycle and G2 has one four cycle. By isomorphic, we mean that there is a bijection
between the vertices such that the induced mapping on the edges is also a bijection.
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d G2( )= 3,2,2,2,1( )d G1( )= 3,2,2,2,1( ) Y G1( )=Y G2( )

Also, note that given a Young diagram, there may not be a graph associated with it.

Example 1.13. For λ = [4, 2, 2, 2, 1, 1] the Young diagram, Y (λ) has no graph with the
same degree sequence. (See Theorem 1.1)

We are interested in those Young diagrams which can be represented with a graph.
These are said to be graphic. Note that a partition of n which is a degree sequence has
1
2n edges in its representative graph, so

∑

v∈V d(v) must be even. Thus a partition of an
odd number is not graphic.

Theorem 1.1 (Ruch-Gutman Theorem). [2] Suppose λ is a partition of an even number
n. Then λ = (λ1, λ2, . . . , λk) is graphic if and only if

r
∑

i=1

λi ≤
r

∑

i=1

(λ∗

i − 1) where 1 ≤ r ≤ tr(λ).

Proof. Suppose that λ is graphic and let λ∗ be the conjugate partition. Number the
verticies in the associated graph in such a way that λj= the number of edges at vertex
j. Let Y be the associated Young diagram. In each row j of Y, place in increasing order
the numbers of the verticies with edges to vertex j. Then the first column of Y contains
all the 1’s as well as a number greater than one in the (1, 1) position. Hence λ∗

1 ≥ λ1 +1.
We continue this process until we get to the k + 1 column where k = tr(λ) If k ≥ 2,

then the first two columns contain all the 1’s and all the 2’s and the first two positions in
the second column contain numbers larger than 2. Hence λ∗

1 +λ∗

2 ≥ λ1 +λ2 +2. Continue
this up to tr(λ) proves half of the Ruch-Gutman Theorem. We will not prove the second
half. We will prove a special case which pertains to the graphs which we will consider.

Definition 1.8. Let λ # n, where n is an even number. Then the partition λ is said to
be a threshold partition if and only if λi = λ∗

i − 1 for 1 ≤ i ≤ tr(λ).

Let λ be a threshold partition with associated Young diagram Y. Remove the first
row and column from Y. The effect this has on λ is to delete λ1, and to subtract 1 from
all the remaining λ, some of which may now be 0. Call the partition σ. Ignoring the 0’s,
the σ and diagram are threshold. therefore they are are the degree sequence for a graph
G. If there were any 0’s in σ, then for each 0, add an isolated vertex. Now add one more
vertex and construct an edge to each of the existing verticies. This graph has λ as it’s
degree sequence. Hence for threshold partitions at least, we have shown the existence of
an associated graph.
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Example 1.14. Let λ = (5, 4, 4, 3, 3, 1). Then Y is

Now σ is (3,3,2,2,0). The associated graph is

5

2 4

1 3

To this graph add a vertex and attach an edge to each other vertex.

5

2 4

1 3

6

Definition 1.9. A threshold graph is one whose degree sequence is a threshold partition.

In other words, threshold graphs hold the property that up to the trace, each column
is one more than its corresponding row.

Example 1.15. Let λ = (6, 5, 3, 3, 2, 2, 1). Then λ is a threshold partition whose Young
diagram Y (λ) and the associated (threshold) graph are shown below:

1

7 2

3

6

5 4
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We will need one more definition to be used in the next chapter about diagrams.

Definition 1.10. An n-hook is a column of n cells whose first row has n-1 cells.

Example 1.16. The following are the young diagrams for various n-hooks.

.

.

.

. . .

n  boxes .

.

.

n -1 boxes

2-hook

3-hook

4-hook

n -hook
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Chapter 2

Counting the Number of Threshold

Graphs

The number of threshold graphs can be counted by constructing their threshold dia-
grams. In this section, we will show by construction that the number of threshold graphs
with n vertices is 2n−2. At the end of this section, an alternate proof is given using
combinatorial methods and Pascal’s triangle.

We will start by constructing the smallest threshold graphs. First, define v(n) =the
number of threshold diagrams with n vertices. The smallest of these is v(1) = 0, which
is called the empty diagram. It is the graph with one vertex and no edges. The next
simplest graph is one with two vertices, v(2), and there is only one graph. Also, the
corresponding tableau is just a 2-hook as shown in the figure below.

2-hook

1v 2v

1v

2v

Notice that the threshold equality is met since λ1 = λ∗

1 − 1 or (1 = 2 − 1), and the
degree sequence is d(G) = (1, 1). Also, notice that when n = 2, the number of threshold
graphs is 22−2 = 1. Examining the case for v(3), we can have the following possibilities
shown in the figure below.

or

1v 2v

3v

1v 2v

3v

These both satisfy the threshold equality and also meets the condition that there are
23−2 = 2 threshold diagrams for three vertices.

The way to construct the next threshold diagram for v(n) is to add an n-hook to all
the previous diagrams, corresponding to vertices less than n. For example, to find v(3),
we will add a 3-hook to the diagram for v(1) (the empty diagram), and add a 3-hook to
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3-hook to empty diagram 3-hook to 2-hook

the diagram for v(2) (the 2-hook). Doing this we get the following two diagrams, which
are the two we already constructed.

This is a valid construction since the threshold equality is satisfied for any n-hook,
since it is a column of n-cells with a first row of n-1 cells and the trace of any n-hook is 1.
Since the hook is added to a previous threshold diagram, the equality is still preserved
up to the trace of the entire diagram. A short outline of a proof follows.

We define a previous partition as λold. Note that for a n-hook, λ∗

1 = n and λ1 = n−1,
therefore λ∗

1 = λ1 + 1. Furthermore, tr(λ) =tr(λold) + 1 and

λ∗

i = λold∗
i−1 + 1

λi = λold
i−1 + 1 for 2 ≤ i ≤ tr(λ)

which implies λ∗

i = λi + 1 for 1 ≤ i ≤ tr(λ).

Example 2.1. The number of threshold diagrams for a graph with 4 vertices, v(4), can
be seen by adding a 4-hook to all previous diagrams. We can see below that the total
number of threshold graphs and diagrams are 24−2 = 22 = 4.

This method of construction proves the number of threshold diagrams for n vertices
is 2n−2. Because all diagrams are constructed from previous diagrams so we see that

v(1) = 0

v(2) = v(1) = 1

v(3) = v(1) + v(2) = v(1) + v(1) = 2 ∗ v(1) = 2 ∗ 1 = 23−2

v(4) = v(1) + v(2) + v(3) = v(3) + v(3) = 2 ∗ 2 = 24−2

...

v(n) = 2 ∗ v(n − 1) = 2n−2

2.0.1 Alternate Proof

We can also count the number of threshold graphs by referring to Pascal’s triangle
(Table 2.1).
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1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

Table 2.1: Pascal’s Triangle

Recall that threshold diagrams for n vertices are formed by adding an n-hook to every
threshold diagram with vertices less than n and the resulting trace is tr(λ) =tr(λold)+ 1.
Since the addition of this n-hook increases the trace by one, the number of diagrams of n
vertices that have trace k is the number of diagrams that had trace k−1 for all diagrams
with vertices less than n. This pattern can be summed up using binomial coefficient and
is illustrated in Figure 2.2. More specifically, the number of diagrams of n vertices that

have trace k is

(

n − 2
k − 1

)

for 1 ≤ k ≤ n − 1. Then the total number of diagrams of n

vertices is

(

n − 2
0

)

+

(

n − 2
1

)

· · ·+

(

n − 2
n − 2

)

= 2n−2.

Vertices
Trace

1 2 3 4 5 · · · n-1 sum
2 1 0 0 0 0 · · · 0 20

3 1 1 0 0 0 · · · 0 21

4 1 2 1 0 0 · · · 0 22

5 1 3 3 1 0 · · · 0 23

6 1 4 6 4 1 · · · 0 24

...

n
(

n − 2
0

)

„

n − 2
1

« „

n − 2
2

« „

n − 2
3

« „

n − 2
4

«

· · ·
„

n − 2
n − 2

«

2n−2

Table 2.2: Pascal’s Triangle related to Threshold Diagrams

Now we need to show that 2n−2 is also the number of threshold graphs for n ver-
tices by showing there is a one-to-one correspondence between threshold diagrams and
their graphs. We know from the previous chapter that every graph has only one degree
sequence and therefore only one Young diagram. So given a threshold graph there is
only one threshold diagram corresponding to it. However, as seen in the last chapter, in
general it is not true that there is only one graph for every Young diagram. But, using
inductive reasoning, we can show that given a threshold diagram, then there is only one
corresponding threshold graph.

For the first case, n = 2 we showed earlier that there is only one threshold diagram for
two vertices. Since the graph involves only one edge between the two vertices, this graph
is unique. Now lets assume this property is true for n vertices. So for n vertices, each
threshold diagram has a unique threshold graph. Recall that to construct the diagrams
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for n + 1 vertices, an n + 1 hook is added to each diagram with vertices less than n + 1.
Graphically, this is the same as the addition of a vertex that is connect to every other
vertex of the graph, and there is only one way to do this as seen in Figure 2.1. Since
the relationship between the graph and the diagram for n vertices is unique and the
n + 1-hook addition is unique, the threshold diagram with n + 1 vertices has only one
corresponding threshold graph. Hence the relationship between them is one-to-one.

. . .

. .

. .

. .

1v

2v

3v

n
v

1+nv

1v

2v

3v

1+nv

( )
n

Y λ

Figure 2.1: The threshold diagram with n+1 vertices and its only corresponding threshold
graph
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Chapter 3

Longest and Shortest Subsequences

Let λ = [λ1, . . . , λn] be a partition of n. Recall that a Young diagram T is called a
standard tableau if the integers 1, 2, . . . , |λ| are placed injectively in the cells of T such
that the elements in each row and column are increasing. For the remainder of the paper,
we will drop the use of cells when drawing the tableaux.

Definition 3.1. A Young diagram of shape λ is called a semistandard tableau if the cells
are filled with the integers, repetitions allowed, such that the elements in the columns are
strictly increasing, and the elements in the rows are non-decreasing.

Definition 3.2. The content µ = (µ1, µ2, . . . , µm) of a semi-standard tableau T has
integer µj = the number of j′s in T .

Example 3.1. Let T=
1 3 5
2 4 6
7

and S=
1 3 3
5 5 7
7

. Then T is standard of shape λ =

[3, 3, 1] and S is semi-standard of shape λ = [3, 3, 1] with content µ = (1, 0, 2, 0, 2, 0, 2).

3.1 Method of Insertion

We now describe the operation of inserting an integer, x, into a semi-standard tableau
T . Insertion begins in the first row and then:

1. If x is at least as large as each element in the first row, place x at the end of the
row and stop.

2. Otherwise, working east to west, find the last element y in the row that is larger
than x. Replace y by x and now repeat this process with y in the second row.
Continue until some element falls into case one.

Example 3.2. Let T=

1 2 2 3 5 5 6
2 3 4 4 6
4 4 5
6

and let x = 2. Now inserting x into T is

demonstrated with the element on the right placed in the position marked by an asterisk

13



as
1 2 2 2∗ 5 5 6 ← 2
2 3 3∗ 4 6 ← 3
4 4 4∗ ← 3
5∗ ← 5
6∗ ← 6

.

Notice that

1. The replaced elements increase.

2. The path of the replaced elements is Southwest

3. The next tableau is semi-standard.

These results always hold for insertion. Suppose that x is inserted into the first row
of T and replaces y. The pertinent elements look like

s y t ← x
z

where s ≤ y ≤ t, x < y < z, and s ≤ x. After inserting x in the first row, y is inserted
into the second row as follows:

s x t
z ← y

and either
s x t

y
or

s x t
y z

where y . . . z means that y is West of z. It is seen here that properties 1, 2, and 3 all
hold.

Definition 3.3. The insertion path is the collection of cells that are involved in the
insertion process.

In Example 3.2, the insertion path is indicated by the asterisks.
A special case of insertion is when the elements in T and the element x are all distinct.

The same rules apply, but ≤ is replaced by <.

Example 3.3. Let T =
1 3 5
2
6

and x = 4. Then
1 3 4∗ ← 4
2 5∗ ← 5
6

.

3.2 Permutations

For each permutation π =

(

1 . . . n
i1 . . . in

)

there is an associated standard tableau.

First, write π by just using the second line i1 . . . in. This is called one-line notation. Now
insert i1, . . . , in in the order i1, i2, . . . , in.
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Example 3.4. If π = (3127465) then the sequence of tableaux are

3
1
3

1 2
3

1 2 7
3

1 2 4
3 7

1 2 4 6
3 7

1 2 4 5
3 6
7

Denote the final tableau by P (π) and notice that the permutation π1 = (7361245)
yields the same tableau, so P (π) = P (π1) which we denote by P . Now π1 has a special
relation with P . Start with the last row of P and working up by rows, list the elements.
In the previous example, we list 7, then 7 3 6, and finally 7 3 6 1 2 4 5, which is π1.
Given any standard tableau T , this process yields a permutation π such that P (π) = T .

This remark can be seen by observing that the insertion process for this π first yield
the last row of T , which is bumped with the second row by what will become the next
to last row of T. This process continues to obtain T , and the permutation constructed
from T is called the row word of T .

Caution: Not every permutation is a word for some T . For example, why does π =
(132) not work?

Since different permutations can have the same tableau, the mapping from π → P (π)
is not a bijection from Sn = {the set of all permutations on the numbers 1 to n} into the
collection of standard tableaux with n−cells. The mapping is surjective since the word π
for T yields P (π) = T . We will show that there is a bijection from Sn onto Ω(n) = {the
set of all pairs of standard tableaux of the same shape with n-cells}.

Given π, construct P (π) by the insertion process. In each step, a new cell is formed as
in Example 3.4. A second tableau Q(π) is also constructed simultaneously by successively
adding a new cell in the same position as in the construction of P (π). When the i′th cell
is constructed, an i is placed in it.

Example 3.5. Let π = (3127465) as in the previous example then the sequence of tableaux
P and Q are

P (π) : 3
1
3

1 2
3

1 2 7
3

1 2 4
3 7

1 2 4 6
3 7

1 2 4 5
3 6
7

Q(π) : 1
1
2

1 3
2

1 3 4
2

1 3 4
2 5

1 3 4 6
2 5

1 3 4 6
2 5
7

Now by assigning π to the pair (P (π), Q(π)), we have created a bijection as we will
explain.

There is also an inverse process to insertion. Suppose that x is inserted into a semi-
standard tableau T and T ′ is obtained. The steps required to recover T from T ′ are as
follows. Suppose that the final cell in the insertion path of x contains µ. Note that µ
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is at the end of a row in T ′. To reverse the insertion of x we retrace the insertion path.
First, µ replaces the last element, ν, that is less than µ. Then in the next row North,
repeat the process with ν. Continue this process until the first row is reached and the
final element replaces will be x. Hence, given P (π) and the order in which the insertion
paths end, given by Q(π), we can invert the construction of P (π) to get π.

Example 3.6. Here is the reverse of the steps in example 3.4. We begin with

P (π) =
1 2 4 5
3 6
7

and Q(π) =
1 3 4 6
2 5
7

The largest element in Q(π) indicates the cell to start with in P (π). So the 7 in the (3, 1)
position in P (π) is moved into the second row, replacing 6, which moves into the first row

replacing 5. After one step P (π) becomes
1 2 4 6
3 7

and Q(π) becomes
1 3 4 6
2 5

.

The full inverse process is as follows:

Step i Pi Qi π

7
1 2 4 5
3 6
7

1 3 4 6
2 5
7

-

6
1 2 4 6
3 7

1 3 4 6
2 5

(5)

5
1 2 4
3 7

1 3 4
2 5

(65)

4
1 2 7
3

1 3 4
2

(465)

3
1 2
3

1 3
2

(7465)

2
1
3

1
2

(27465)

1 3 1 (127465)
0 - - (31274565)

In summary, the process that we have described gives a bijection π ← (P (π), Q(π))
from Sn onto Ω(n).

As we have seen, two different permutations can have the same insertion tableau.
Therefore, given such a tableau that is constructed from a permutation, it is impossi-
ble to know which permutation from which it came. To remedy this process, Robinson
constructs a placement tableau for the permutation. When the ith element in the per-
mutation is inserted in the construction of P, a new cell is formed. We keep track of
the positions of these new cells in a tableau Q. Formally, given permutation π, a pair of
tableaux, (P, Q) is constructed, P by insertion and Q by placement. For example, let
π = (3127465). The sequence of steps in constructing (P (π), Q(π)) is as follows
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P (π) : 3
1
3

1 2
3

1 2 7
3

1 2 4
3 7

1 2 4 6
3 7

1 2 4 5
3 6
7

Q(π) : 1
1
2

1 3
2

1 3 4
2

1 3 4
2 5

1 3 4 6
2 5

1 3 4 6
2 5
7

Hence π is assigned to (P (π), Q(π)), a process which we claim is a bijection between
the set of permutations of length n and pairs of standard tableaux of the same shape with
n cells. The inverse process is as follows. Find the cell with the largest integer in Q and
remove this cell from Q. The integer, x, in that position in P is removed by retracing the
insertion path. Note that x is in the last element in some row. As the process begins, the
cell in P which contains x is removed. Move up to the next row and find, moving East,
the largest integer, y, that is less than x. Then y is removed from that row and move up
to the next row to repeat the process. The final integer bumped from the first row goes
at the East end of the permutation which is in one line notation. The process continues
with the remaining largest integer in Q. This process is the inverse of the construction
of (P (π), Q(π)) and the desired bijection is established.

If the restriction that elements in the sequence are distinct is removed, then the same
process shows that the is a bijection between sequences, ω of length n of positive integers
from 1 to n, with repetitions allowed, and pairs, (P (ω), Q(ω)), of tableaux of the same
shape with n cells and entries from 1 to n, P semi-standard and Q standard. In this
form the bijection is the Robinson-Schensted correspondence.

Theorem 3.1. Let fλ be the number of standard tableaux of shape λ, |λ| = n. The
bijection gives

n! =
∑

λ

(fλ)2

where the sum is over all partitions of n.

Example 3.7. Let n = 3. Then

Partition λ fλ List of Standard Tableaux
[3] 1 1 2 3

[2,1] 2
1 2
3

and
1 3
2

[1,1,1] 1
1
2
3

Then 3! = 12 + 22 + 12.
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The preceding process can be generalized. Suppose that π is allowed to have repeti-
tions. Then π is no longer a permutation in one line notation, π is now called a word.
We have described how to construct a semi-standard tableau, P (π), from any word using
the insertion process. Q(π) is constructed as before, keeping track of the order in which
new cells are added. The inverse procedure is also valid. Hence consider the set S of all
words of length n with elements j, where 0 ≤ j ≤ t for a fixed t. The bijection sn ← Ω(n)
becomes a bijection from S to (P, Q), where P and Q are tableaux of the same shape
with n cells and P is semi-standard while Q is standard.

Definition 3.4. The number of semi-standard tableaux of shape λ and content µ, denoted
by Kλ,µ, is called the Kostka number for λ and µ.

Example 3.8. Let λ = [3, 2] and µ = [2, 1, 1, 1]. Then the following are all the possible
semi-standard tableaux of shape λ and content µ.

1 1 2
3 4

1 1 3
2 4

and
1 1 4
2 3

Hence Kλ,µ = 3.

The following theorem is a generalization of Theorem 3.1 and the proof uses the
bijection between words of length n using integers between 1 and t and tableaux (P, Q)
of the same shape having n cells. Again, P is semi-standard and Q is standard and the
cells in P contain integers between 1 and t.

Theorem 3.2.

|S| =
∑

λ

∑

µ

(fλ)Kλ,µ

where the first sum is over all the partitions of n and the second sum is over the content
µ with elements from 1 to t.

Exercise 3.1. Let λ and µ be partitions of n, where λ = [λ1, . . . , λk] and µ = [µ1, . . . , µk]
where we add 0’s at the end of λ or µ in order so that they have the same length. Define
λ ≥ µ if λ1 + · · · + λj ≥ µ1 + · · ·+ µj for j = 1, 2, . . . , k, and also define λ > µ if λ ≥ µ
but λ )= µ. Then

1. Prove that if µ > λ, then Kλ,µ = 0.

2. Prove that if µ = λ, then Kλ,µ = 1.

3. Find w if P (w) =
1 1 1 3
2 2 2
3

and Q(w) =
1 2 5 8
3 4 7
6

.

4. Find P (w) and Q(w) for w = (52165535) and for w = (145362432).

5. Find Kλ,µ for λ = [4, 3, 1] and µ = [3, 2, 1, 2].
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3.3 Subsequences of Words

Let w be a word. In this section, we will find the length of the longest non-decreasing
subsequence of w and also the length of the longest decreasing subsequence of w. When
w is a permutation (no repeated numbers), then the method presented finds the length
of the longest increasing subsequence of w. We begin by considering permutations.

Consider the case when w is a word of a standard tableau T , of shape λ = [λ1, λ2, . . . , λk].
There is an increasing subsequence of w of length λ1 using the elements from the first
row of T . Let σ be an increasing subsequence of w. We claim that σ can contain no more
than one element from each column of T .

Suppose that a and b are elements of T and are in the same column, C, of T and
that a comes before b in σ. Then a < b. But the construction of w is such that rows of
T appear in ascending order in w. Hence b < a, which is a contradiction. Consequently,
the elements of σ come from different columns of T and the length of σ is at most λ1.
Thus the longest increasing subsequence of w has length λ1.

Now consider the length of the longest decreasing subsequence of w. The elements in
the first column of T are in increasing order, and they are in reverse order in w. Hence
they form a decreasing subsequence of w of length k, the number of rows in T . Let σ be
an decreasing subsequence of w. Each row of T has its elements in adjacent positions in
w with the order preserved. Hence no two elements of σ come from the same row and σ
can have length at most k. Therefore, the length of the longest decreasing subsequence
of w is k.

For general sequences, let π be a sequence and P (π) be the tableau formed by insertion
and w be the word associated with P (π). We claim that the longest increasing (or
decreasing) subsequences of π and w have the same length.

Example 3.9. Let π = (68123547).

Then P (π) =
1 2 3 4 7
5 8
6

and then w = (65812347).

A longest increasing subsequence for w is 12347 and that is also true for π. The
longest decreasing subsequence of w is 654 and that is also true for π. However, it is not
always the case that the same subsequences work for both π and w, but the lengths will
be the same.

Looking more closely at insertion, in the previous example we inserted 4 into T =
1 2 3 5
6 8

. We will write the process as
1 2 3 5 . 4
6 8

= T · 4. Inserting one more

move at a time shows that

T · 4 →
1 2 3 5 4
6 8

→
1 2 5 3 4
6 8

→
1 5 2 3 4
6 8

→
5 1 2 3 4
6 8

→

1 2 3 4
6 8 5

→
1 2 3 4
6 5 8

→
1 2 3 4
5 8
6

= T1
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Let us consider this process using the word w = (681235). Then w.4 = (681235.4) =
(6812354) → (6812534) → (6815234) → (6851234) → (6581234) = w1 which is the word
for T1.

These moves have been accomplished by interchanging adjacent integers under the
following conditions:

For x < y < z

1. yxz = yzx

2. xzy = zxy

These relations are called Knuth relations of the first and second kind. Inserting s
into tableau T yields tableau T ′ where the words of T and T ′ are related by a sequence
of Knuth relations. In the previous example, the first three moves were by a Knuth
relation of the second kind and the last move is by a Knuth relation of the first kind. In
particular, the following table shows the moves:

Move x y z
1 3 4 5
2 2 3 5
3 1 2 5
4 5 6 8

We will show that when two words differ by a Knuth relation, then the lengths of the
longest increasing (or decreasing) subsequences are invariant.

Consider the increasing case and a Knuth relation of the first kind. Let w be a word,
a part of which is ayxzb with x < y < z and where a and b are not necessarily adjacent
to y and z. Let w′ be the word with yxz replaced by yzx (the Knuth relations of the
first kind). Let σ be a maximal increasing subsequence of w which contain a and b but
no other element of w except some of the y, x and z. If none of the x, y, z are in σ, then
the Knuth relation has no effect. If ayzb are (now adjacent) elements in σ then the same
sequence is a maximal increasing subsequence of w′.

If axzb is part of σ, then ayzb is part of a maximal increasing subsequence of w′,
which is the same as σ except for the substitution of y for x. Hence Knuth relations of
the first kind do not alter the lengths of the longest increasing subsequence of w and w′.
The same is true for Knuth relations of the second kind and also for lengths of decreasing
subsequences.

In summary, given a permutation π, we can form P (π) and let w be the associated
word for P (π). Then w and π are Knuth equivalent, where their longest increasing (or
decreasing) subsequence are the same. Thus the length of the first row (or column) of
P (π) gives the length of the longest increasing (or decreasing) subsequences of w, hence
of π. The result is stated in the following theorem.

Theorem 3.3. Let π be a permutation. The length of the longest increasing subsequence
of π is the length of the first row of P (π) and the length of the longest decreasing subse-
quence of π is the length of the first column of P (π).
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Example 3.10. Let π = (925746138). Then P (π) =

1 3 6 8
2 4
5 7
9

. The longest increasing

subsequence and longest decreasing subsequence both have length 4. Note that the first
row of P (π) is not a subsequence of π, nor is the first column. These results only give
the length of the subsequence, not the subsequence itself.

If we consider words instead of of just permutations, we recover similar results with
similar arguments. Starting with word w, construct P (w), which is a semi-standard
tableau. When the word τ of P (w) is formed, the length of the first row of P (w) is the
length of the longest non-decreasing subsequence of τ and the length of the first column
of P (w) is the length of the longest decreasing subsequence of τ . As before, insertion
corresponds to Knuth relations, slightly altered. Now they are:

1. yxz = yzx when x < y ≤ z

2. xzy = zxy when x ≤ y < z

As before, Knuth equivalent words leaves the lengths we are considering invariant.
Thus w and τ are Knuth equivalent and the shape of P (w) gives the desired information.

Theorem 3.4. Let w be a word and P (w) be the insertion tableau. The length of the
longest non-decreasing subsequence of w is the length of the first row of P (w) and the
length of the longest decreasing subsequence of w is the length of the first column of P (w).

Exercises Given w = (523527154263), find the length of

1. The longest non-decreasing subsequence of w.

2. The longest decreasing subsequence of w.

3. The longest non-increasing subsequence of w.

4. The longest increasing subsequence of w.

We consider a generalization of these results.
Given a word w, then k subsequences are disjoint if no element from w is in more than

one of the subsequences. Modifying the previous arguments, it can be shown that k−non-
decreasing disjoint subsequences can be found such that the total number of elements in
the subsequences is equal to the number of elements in the first k rows of P (w) and that
this is the maximum possible. Similar remarks hold for all of our results.

Exercise 3.2. In the previous exercise, what is the length of the longest pair of non-
decreasing (or decreasing) disjoint subsequence of w? What is the length of longest pair
of non-increasing (or increasing) disjoint subsequences of w?
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Chapter 4

Counting Certain Sets of Matrices

Let A = (ai,j) be an m × n matrix with non-negative integer entries. Then ri =
∑n

j=1 ai,j is called the i’th row sum of A and cj =
∑m

i=1 ai,j is called the j’th column
sum of A. We will develop a method which finds the number of A which have any given
sequence r1, ...rm, c1, ..., cn of row and column sums.

For each A, construct a two row array ω with columns

(

i
j

)

occurring ai,j times

and

(

i
j

)

appearing before

(

k
l

)

if i < k or i = k and j < l. Such an array is said to

be in lexicographic order. There are z =
∑

ri =
∑

cj columns in ω.

Example 4.1. Let

A =





2 1
0 1
4 2



 .

Then the associated array is ω =

(

1 1 1 2 3 3 3 3 3 3
1 1 2 2 1 1 1 1 2 2

)

.

For a fixed m and n and row and column sums, there is a bijection between matrices
and associated arrays. These arrays are generalizations of the words that we considered
previously where the first row consists of integers 1 through n, each appearing once.
Using the the same methods as before, a pair of tableaux is constructed. Now each
tableau is semistandard. In particular, given ω, P (ω) is constructed by insertion and
Q(ω) is constructed by placement. Thus the i’th element in the second row ω is inserted
into a cell of P (ω) and the i’th element in the first row of ω is placed in the corresponding
cell in Q(ω).
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Example 4.2. Let

ω =

(

1 1 1 2 2 2 3 4
1 2 2 1 2 5 2 1

)

.

The construction of P(ω) and Q(ω) proceeds as follows.
P Q

1 1

12 11

122 111

112 111
2 2

1122 1112
2 2

11225 11122
2 2

11222 11122
25 23

11122 11122
22 23
5 4
Both final tableaux are semistandard

We will now describe an inverse procedure. Start with semistandard tableaux, P and
Q. We find an array ω such that P (ω) = P and Q(ω) = Q. We now explain the order
in which elements from P and Q are removed. If there is a single largest element in Q,
then it’s cell determines the cell where the inverse procedure begins. The element in that
cell in P is removed using the same inverse procedure as in the case of words. If there
are several largest elements, u, in Q then choose the cell furthest east that contains u.
Performing the inverse insertion process on the element in the corresponding cell in P

removes an element v from P. Then ω =

(

u
v

)

is the final column in ω. The process is

repeated until ω is constructed.
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Example 4.3. The step by step inverse procedure in the last example gives

ω =

(

4
1

)

ω =

(

3 4
2 1

)

ω =

(

2 3 4
5 2 1

)

ω =

(

2 2 3 4
2 5 2 1

)

ω =

(

2 2 2 3 4
1 2 5 2 1

)

ω =

(

1 2 2 2 3 4
2 1 2 5 2 1

)

ω =

(

1 1 2 2 2 3 4
2 2 1 2 5 2 1

)

ω =

(

1 1 1 2 2 2 3 4
1 2 2 1 2 5 2 1

)

Lemma 4.1. Let a and b be in a semistandard tableau, P, with a south West of b. If the
inverse insertion procedure is preformed on b, removing x, and then on a, removing y,
then x ≥ y.

Proof. The removal path of a is row by row West of the removal path of b and the result
follows. !

As a consequence of lemma 4.1, the array formed by the inverse procedure is lexico-
graphically ordered. Therefore the inverse procedure is indeed the inverse to insertion.
Thus there is a bijection between arrays and pairs of semistandard tableaux.

Each n × m matrix with non negative integer entries and prescribed row sums r =
[r1, ...rm] and column sums c = [c1, ..., cn] gives a lexicographically ordered array ω with
z =

∑

ri =
∑

cj columns whose first row contains ri i’s and the second row contains cj

j’s. Then ω determines a pair of semistandard tableaux, (P (ω), Q(ω)) of the same shape
which come from a partition of z. The first tableau has content has content c and the
second tableau has content r. Both correspondences are bijections.

Theorem 4.1. Fix m, n, r = [r1, ...rm] and c = [c1, ..., cn] The number of m×n matrices
with non negative integer entries and row sums given by r and column sums given by c
is

∑

Kλ,cKλ,r where the K’s are Kostka numbers, the number of semistandard tableaux
of shape λ and content c or r and λ runs over all partitions of z.
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Example 4.4. Consider all 2 × 3 matrices with r = [r1, r2] = [2, 4] and c = [c1, c2, c3] =
[2, 1, 3]. Then z = 6. We find all semistandard tableaux of shape a partition of z and
content r and c respectively.

λ r= [2,4] c =[2,1,3]

[6] 1 1 2 2 2 1 1 2 3 3 3

[5,1] 1 1 2 2 2 1 1 2 3 3 1 1 3 3 3
2 3 2

[4,2] 1 1 2 2 1 1 2 3 1 1 3 3
2 2 3 3 2 3

[4,1,1] none and none for the remainder of the partitions.

Hence for λ = [6] the product of Kostka numbers is 1, for λ = [5, 1] the product of
Kostka numbers is 2 and for λ = [4, 2] the product of Kostka numbers is 2. The total
number of matrices with the prescribed row and column sums is 5.

We can also find the matrices. They are

A1 =

(

1 0 1
1 1 2

)

,

A2 =

(

1 1 0
1 0 3

)

,

A3 =

(

2 0 0
0 1 3

)

,

A4 =

(

0 1 1
2 0 2

)

and

A5 =

(

0 0 2
2 1 1

)

.

Exercise 4.1. Find the number of 3 × 3 matrices with nonnegative integer entries with
row sums [3, 3, 2] and column sums [5, 1, 2].

4.1 Counting Standard and Semistandard Tableaux

There are remarkable formulas for counting the number of standard and semistandard
tableaux. Let Y be the Young diagram associated with partition λ. Define a hook at any
cell, c, in the (i, j) position in Y to be c along with all cells east in the row containing c
and all cells south in the column containing c. Let h(i, j) be the number of cells in the
hook. h(i, j) is called the hook length. Notice that these hooks are different than the
ones in Chapter 2.
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Theorem 4.2. The number of standard tableaux for the partition λ, where |λ| = n is

n!

product of all hook lengths in the diagram
.

Example 4.5. The number of standard tableaux for λ = [5, 4, 3] is

12!

7 × 6 × 5 × 3 × 1 × 5 × 4 × 3 × 1 × 3 × 2 × 1
.

At each cell we list the associated hook length.

7 6 5 3 1
5 4 3 1
3 2 1

A cute justification of the formula, assuming that the probabilities are independent
(which they aren’t), is the following. There are n! ways to distribute the integers into
cells. A distribution will be standard if each hook has it’s smallest integer at the orig-
inal cell; that is, where the hook is. The probability that a hook has this property is

1

it’s hook length . Hence

the number of standard tableaux

n!
=

1

product of the hook lengths
.

There is also a result which count the number of semistandard tableaux for partition
λ where the entries come from the first m positive integers.

Theorem 4.3. The number of semistandard tableaux of shape λ whose entries are from
the first m positive integers is

∏

(i,j)∈λ(m + j − i)
∏

(i,j)∈λ h(i, j)
.

Example 4.6. Let λ = [4, 3, 2] and m = 5.
There is a simple device used to obtain the numerator in the formula. Fill the diagram

for λ with m down the diagonal and then, starting on the diagonal, going East along each
row, increase the entries by 1 each step and going South along each column, decrease the
entries by one each step. These are the entries for the numerator

5 6 7 8
4 5 6
3 4

As before, we use the Young diagram to record the hook lengths.
6 5 3 1
4 3 1
2 1

The number of semistandard tableaux for λ and m is the product of all elements in
the first table divided by the product of all elements in the second table. That quotient is
1120.
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Chapter 5

Symmetry in tableaux P (λ) and Q(λ)

There is a remarkable symmetry in the tableaux P (λ) and Q(λ). For λ a permutation
this was shown by Viennot and for λ an array it was generalized by Knuth. In either
case the result is that interchanging the rows in λ has the effect of interchanging P (λ)
and Q(λ). In particular, if λ is a permutation which is an involution; that is, λ is equal
to its inverse, then P (λ) = Q(λ). In the case of arrays, an interpretation is that if the
associated matrix is symmetric, then P (λ) = Q(λ).

For permutations, a consequence of the symmetry is that there is a bijection between
permutation involutions of length n and standard tableaux of size n. There is a recursion
formula for the number, a(n), of permutation involutions of size n . Let S = (1, . . . , n).
As a product of disjoint cycles, a permutation involution has no cycles of length greater
than two. To construct the recursion, consider two cases. Either n is in a two cycle or
n is in a one cycle. The set of those in the second case is bijectively the same as the
involutions on (1, . . . , n− 1). Hence there are a(n− 1) of this type. In the first case, n is
in a two cycle with some j. For each j, these involutions are constructed by taking each
permutation involution on (1, . . . , j − 1, j + 1, . . . , n − 1) and affixing (j, n). The total
number so obtained for each j is a(n − 2) and for all j is (n − 1)a(n − 2). Therefore

a(n) = a(n − 1) + (n − 1)a(n − 2).

Thus, the number of standard tableaux of size n is given by this formula. The first
few values are 1, 2, 4, 10, 26.

We will discuss the symmetry theorem for the general case of arrays. For an array, ω,
Pω and Qω can be constructed by a different method called matrix ball construction [1].

Begin by constructing the matrix A = (ai,j) as before, ai,j is the number of pairs

(

i
j

)

in ω. Now we construct a matrix of balls where ai,j balls are placed in the (i, j) position.
In each matrix position slant the balls in a SouthEast direction. Number the balls by
starting with a 1 in the most NorthWest position. In a matrix position with more than
one ball, number the balls with consecutively increasing integers as moving SouthEast.
On leaving a matrix position, move horizontally and vertically, and number balls with
the smallest integer which has not been used in any northwest position.

27



Example 5.1. Let ω =

(

1 1 1 1 2 2 2 2 3 3 3
1 2 2 2 1 2 2 3 2 2 3

)

. Then A =





1 3 0
1 2 1
0 2 1





and the matrix ball B is

1 2

2

3

4

5

6

7

8

97

Clearly A can be recovered from B.

We now construct tableaux P = P (B) and Q = Q(B). In the first row in P, for each
integer in B place the smallest number of the column number in B where there is a ball
containing that integer. Likewise, in the first row in Q place the smallest row number
which contains the integer.

In example 5.1, the first row of P is 1, 1, 2, 2, 2, 2, 2, 2, 3 and of Q is 1, 1, 1, 1, 2, 2, 2, 3, 3.
To continue, a new ball matrix is constructed. For each integer k appearing in B, do the
following. At each appearance of k, draw a ray South in that column and a ray East in
that row. For each row ray, find the intersection with a column ray and place a ball in
that position. Evidently, for each k, the number of new balls is one less than the number
of balls labeled k in B. Now label the balls using the same process as before. In the
example 5.1, the new matrix is

1

2

The second rows in P and Q are found as were the first rows; by finding, for each
integer k in the new matrix, the smallest column number, for P, and smallest row number,
for Q, where there is an appearance of k. This process is repeated until the new ball matrix
has no entries. In example 5.1,

P (B) =

(

1 1 2 2 2 2 2 2 2 2 3
2 3

)

and
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Q(B) =

(

1 1 1 1 2 2 2 3 3
2 3

)

.

It still needs to be shown that constructing the tableaux by the matrix ball method
coincides with constructing them by insertion. For this we will refer to [1].
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