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1. Introduction
This Module begins with a card trick explained in Section 2, followed

by an example of the trick succeeding. Before describing the secret behind
the trick’s success, we describes several cryptosystems that rely on what
is known as the discrete logarithm problem (DLP) (Section 3). The link
between these topics is Pollard’s kangaroo method, which is an attack on
the DLP as well as the basis for the trick. In Section 4, we reveal the secret
behind the trick, together with many of the links among cryptography,
discrete logarithms, cards, and kangaroos. Before further analysis on the
card trick,we set out results aboutMarkov chainsSection 5. We thenmodel
the card trickasaMarkovprocessSection6. The resultsof theMarkovchain
analysis confirm that the card trick will “probably” work. “Probably” was
the precise word used by Martin Gardner [1978], who first published the
trick; his intent was to convey its difference from a typical magician’s trick.
We also performanother probabilistic analysis, on amodifiedversion of the
card trick, in Section 7, which provides an upper bound on the probability
of the trick failing.

2. A Card Trick
A group of mathematicians gathers at a party. To entertain her peers,

one brings a standard deck of 52 cards (i.e., a poker/bridge deck) and
throughout the evening performs the following trick:
As dealer, she invites a person to be the player and instructs the player
to choose secretly a number between 1 and 10. She informs all watch-
ing that each card has a value: Aces 1, face cards 5, and all other cards
the number on the card. She deals the cards, one at a time face up.
When the number of cards dealt equals the player’s secretly chosen
number, the player is to note (silently) the value of the corresponding
card, which we refer to as the player’s first key card. With the first key
card’s value in mind, the player silently counts until the number of
cards dealt from his key card on equals its value; the corresponding
card is the player’s second key card.
For instance, suppose that the player initially chose 4 as the secret

number and the first four cards dealt are A, 10, 2, 8; then the player’s
first key card is the 8. The player next counts to the eighth card dealt
after the 8 to arrive at the player’s second key card.
Play continues in this manner, from one key card to the next, until

all 52 cards have been dealt. The dealer then announces what she be-
lieves to be the player’s last secret card. To the player’s astonishment,
the dealer is correct (well, maybe—as we will see).

1
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An example of a deck, with the player’s key cards in red/gray) appears
below.
Example 1.

A, 10, 2, 8, 7, 4, 7, J, 6, 5,K, 8, 2, 3, 9, 8, 5, Q, J, 5, 6, 8,K, 10,K, 3,

9, 5, 2,K, 4, Q, 9, Q, 3, 7, 6, A, J, 10, J, A, 6, 4, 9, 4, 7, A, 2, 3,Q, 10

The initial secret number was 4 and the last key card is a Queen. (The
trick does not distinguish suits or colors.)
The dealer does not always correctly guess the player’s last card, but

most of the time she is successful. As she performs the trick with other
players, her fellow mathematicians begin to inquire how the trick works.
They note that the deck is random, neither shuffled nor stacked in any par-
ticular order. The dealer, not being a true magician, is happy to discuss the
secret, but first she must give some background on a seemingly unrelated
topic—cryptography.
For Websites where you can play the card trick, see Haga and Robins

[1997] or Montenegro [2009].

Exercises

1. a) Perform the card trick from Example 1 as if you were the player,
using a different initial secret number. What is the last card that you
land on (your last key card)?

b) Is there an initial secret number between 1 and 10 that will lead to
something other than the Queen being the last key card? If so, what
number(s) will do so?

2. What are the possible last key cards if the card trick is played on the
ordered deck

A,A,A,A, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,

8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, J, J, J, J,Q,Q,Q,Q,K,K,K,K?

3. Cryptography
This section gives realistic scenarios in which the mathematics behind

the card trick’s secret can be used. We will divulge the secret of the trick
in Section 4. For now, we say only that the trick is related to an attack on
theDiscrete LogarithmProblem (DLP), which also has ties to cryptography
and will be discussed later in this section.

2
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3.1 Ciphertext
Cryptography’ goal is to send messages across an insecure channel to

the intended recipient without eavesdroppers reading them. To achieve
this goal, an encryption algorithm turns the original plaintext message into
ciphertext, which in turn is sent to the intended recipient. The recipient
uses a decryption algorithm to convert the message back into its original
plaintext. Completing the Sunday paper’s Cryptoquote is an example of
deciphering ciphertext (Figure 1).

Figure 1. Cryptoquote. The correspondence in the sample (LONGFELLOWetc.) is not the same as
the correspondence in the Cryptoquote. Exercise 3 asks you to solve the Cryptoquote. (Courtesy
of the Arkansas Democrat Gazette, 2 March 2011.)

The Cryptoquote puzzle uses a very naı̈ve encryption algorithm, in
which a bijective function f maps each letter to another letter. The de-
cryption algorithm applies the inverse of f to the ciphertext and uncovers
the original plaintext.
A stronger and more useful encryption algorithm would be a function

that receivesplaintextanda secret keyas inputsandoutputs ciphertext. The
decryption algorithm would input ciphertext and a secret key and output
plaintext. Thekey is not known to eavesdroppers. Thus, the securitywould
rely less on the algorithm and more on the security of the keys.

3.2 Diffie-Hellman Key Exchange Protocol
How do two people agree on a key while keeping it secret? Certainly,

twopeople canmeet inpersonanddecideon akey, but such ameeting is not
always feasible. Instead, we consider a method by which two parties can
agree on a secret key in communication across a possibly insecure channel,
the Diffie-Hellman key exchange protocol, devised byWhitfield Diffie and

3
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Martin Hellman [1976]. An earlier version was discovered independently
in 1974 by Malcolm J. Williamson of British Government Communications
Headquarters but kept classified. Singh [1999, Ch. 6, 243–292] tells the
stories of the discoveries.
The Diffie-Hellman key exchange protocol uses the group of nonzero

integers module p, denoted Z⇤p. So we remind the reader of a relevant
definition:
An element g is a generator of a group G if for all x 2 G, there exists
an n 2 N such that gn = x. If so, we write hgi = G.
Suppose that Alice and Bobwish to exchange private information. They

can arrive at a shared key through the Diffie-Hellman protocol as detailed
in Figure 2.

1. Alice and Bob agree on a prime p and an integer g such that 1 < g < p
and hgi = Z⇤p .

2. Now, Alice and Bob secretly choose integers x and y, respectively, with
1 < x, y < p.

3. Alice sends X = gx mod p to Bob and Bob sends Y = gy (mod p) to
Alice.

4. Alice computes Y x = gxy mod p while Bob computes Xy = gyx

(mod p). They arrive at the same number, which is the key.

Figure 2. The Diffie-Hellman key exchange protocol.

Example 2. In practice, the value of p is often large (with length 1024
or 2048 bits) and the computations are done with a computer algebra
system. We use a small p, p = 23 (with 5 bits, since 23 = 101112), to
exemplify the steps of the protocol. We first find a generator g for the
group G = Z⇤23 = {1, 2, . . . , 22}. Any such generator will have the
property that

gp�1 = 1 (mod p), (1)

but no integer smaller than p� 1 = 22 satisfies (1). Since

211 = 311 = 1 mod 23,

neither 2 nor 3 generates the group. Because 2 is not a generator,
4 = 22 is not a generator either. After verification that 522 = 1 mod 23
and no other power less than 22 satisfies 5n = 1 mod 23, we know
that 5 is a generator. (Verification can be done with Maple using the
commandmod or with Mathematica using its Mod[m,n].)

4
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Now we arbitrarily pick two numbers, say x = 6 and y = 15, and
compute

X = 56 = (52)3 = 23 = 8 (mod 23)
Y = 515 = (52)75 = (27)5 = (13)5 = 19 (mod 23).

Thus inG,

Y x = 196 = (192)319 = 163 = (3)16 = 2,
Xy = 815 = (83)5 = 65 = (62)26 = (132)6 = (8)6 = 2,

so the key is 2. This key is then used to encrypt messages to be sent
between the two parties. We have used laws of exponents to complete
these computations in detail, though the use of a computer algebra
system can simplify the work.
There are many ways in which a key can encrypt a message. A type of

substitution cipher known as the Caesar cipher is credited to Julius Caesar.
Applied to modern-day English letters, it would convert the letters A. . . Z
to the numbers 0 . . . 25, respectively, and use a key k to shift each number
x in the message to

y = x + k (mod 26).

The message could be decrypted by computing y � k (mod 26). If an
eavesdropper on themessage knew the key and the algorithm, themessage
could be deciphered. For this reason, the security of the key needs high
priority.
In theDiffie-Hellmankey exchange, p, g,X , andY are considered public,

meaning that an eavesdropper may know the values of these variables—
and can know them without compromising the security of transmissions.
But if in addition an eavesdropper candeterminex and y, then he or she can
calculate the key k—andwith k, any encryptedmessage can be deciphered.
Thus, solving X = gx for x and then Y = gy for y is the eavesdropper’s
goal, since the key is k = gxy.
If this computation were being done over the real numbers, one would

use logarithms to determine exponents x and y. However, the Diffie-
Hellmanprotocoluses afinitegroup, inwhich theanalogue to the logarithm
defined over the real numbers is not easily computed. Calculating such a
is known as the discrete logarithm problem (DLP). This problem is highly
nontrivial and no efficient general solution is known. There are, however,
methods that are faster than the brute-force guess-and-check method of
taking higher powers of g until gx = X for some x.
We measure efficiency in terms of the number of computational steps

needed to complete the algorithm. A polynomial-time algorithm is one that
can be run in no more than cnk steps where c and k are positive constants

5
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and n represents the length of the input of the algorithm. The length of the
input is the number of bits needed to represent the input, not the value itself
of the input. Examples of polynomial-time algorithms include addition,
subtraction, multiplication, and division. There is no known method to
solve the discrete logarithm problem in steps bounded by a polynomial in
the length of the input. In the next section, we describe a method that runs
in time O(w1/2) = O(e(log w)/2), where w is a bound on the length of the
inputs andO is big-oh notation for the order of magnitude.
But first we introduce a cryptosystem similar to the Diffie-Hellman key

exchange protocol. Our intent is to show that the inherent difficulty in
solving the DLP is useful in cryptography. An attack on the DLP will
connect these cryptography concepts to the card trick.

3.3 ElGamal Cryptosystem
Bob selects a prime p and generator g of Z⇤p. He also picks a 2 Z⇤p such

that a < p� 1. He thenmakes his key (p, g, ga)public. Now, supposeAlice
that wants to send Bob a message. She encrypts the message through the
following steps:
1. Look up Bob’s public key (p, g, ga).
2. Convert the message into integersm1,m2,m3, . . . ,mn, withmi 2 Zp.
3. Choose a random number b 2 Z⇤p such that b < p� 1.

4. ComputeB = gb (mod p) and Ci = mi(ga)b (mod p) for each i.
5. Send the ciphertext (B,C1, C2, . . . , Cn) to Bob.

To decode the ciphertext, Bob uses the following algorithm.
1. Use the private key a to computeBp�a (mod p), the inverse of gab.
2. Compute, for each i,

B�aCi = (gb)�ami(ga)b = g�abmig
ab = mi (mod p).

Exercise

3. Determine f and the plaintext message of the ciphertext from Figure 1.
In Example 2, we showed an example of the Diffie-Hellman key ex-

change protocol using 5 as a generator. In the following exercises, we wish
to explore how to find other generators of this cyclic group.

6
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4. Lagrange’s Theorem states that any subgroupH of a finite groupG has
the property that |H| divides |G|:

|H|
�� |G|.

Use this theorem to determine the possible orders of hxiwhere x 2 Z⇤23.
5. Determine the other generators for Z⇤23 using the assertion above and
(1).

6. Use a computer algebra system, plus (1), to determine the smallest
generator for Z⇤102877. The mod(e,m) command in Maple calculates e
(mod m), while Mod[e,m] does the same in Mathematica.

7. Identify the public and private information in Example 2. How might
you determine the private numbers from the public ones?

8. In theElGamalcryptosystem,prove theassertion thatBp�a is the inverse
of gab.

9. Suppose that p = 1777, g = 6, and a = 1009. Use the ElGamal cryp-
tosystem and either Maple or Mathematica to encipher m = 1341, as-
suming that b = 701.

10. Use the same values for p, g, a, and b as given in Exercise 9 to decipher
C = 1031with B = 1664, using either Maple or Mathematica.

11. Identify the public and private components of the ElGamal cryptosys-
tem. How do they compare to the public and private information in the
Diffie-Hellman key exchange?

4. Pollard’sKangarooMethod: AnAttack
on the DLP

We now know of cryptosystems whose security relies on the difficulty
of the DLP. Even though there is no general efficient way to solve the DLP,
we discuss one way to attack the DLP, which foreshadows the card trick.

4.1 Jumping Kangaroos
Let G be a finite multiplicative cyclic group generated by g, and let

X 2 G. We can think ofG as the group of units in some Zk.
We wish to solve gx = X ; the x is called the index of X . We begin by

constructing two sequences:
• one sequence has what we consider “tame” behavior, because we know
its starting position; and

7
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• the other sequence has what we consider “wild” behavior, because it
starts at a position unknown to us.

We can visualize these sequences as kangaroos jumping through the cyclic
group, landing on elements ofG (Figure 3).

Figure 3. Conceptual diagram of the kangaroo method, with T andW denoting the tame and wild
kangaroos.

To control the jumps of the kangaroos, we use a hash function

h : G ! J ⇢ Zk.

A hash function converts a large amount of data to a smaller amount; an
examplewould be the function that converts your name to just your initials.
We let our hash function hmap the |G| elements ofG to the smaller set

J =
�
1, 2, 3, 4, . . . ,

⌅p
|G|
⇧ 

of size b
p

|G|c, where bxc is the floor function that outputs the largest
integer less than or equal to x. Further explanation of the choice of this
hash function (and other possibilities) will follow after this section.
Now, the tame kangaroo starts at a known value a0 = g and proceeds

by jumping a distance h(a0), so that at the end of its first jump it is at
a1 = a0gh(a0). In general, with subsequent jumps, am+1 = amgh(am). With
recursion and simplification, we have

am+1 = g1+h(a0)+h(a1)+...+h(am).

8
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Afterm + 1 jumps, the kangaroo has traveled a distance

dm+1 = h(a0) + h(a1) + . . . + h(am).

More importantly, the path of this tame kangaroo is comprised of powers
of g, the generator ofG.
The wild kangaroo travels on a path with unknown starting value b0 =

X = gx. It uses the same hash function to determine jump size, so that
bn+1 = bngh(bn). We have

bn+1 = Xgh(b0)+h(b1)+...+h(bn).

Here, the distance traveled by the wild kangaroo after n + 1 jumps is

d
0
n+1 = h(b0) + h(b1) + . . . + h(bn).

The path of the wild kangaroo is composed ofX times powers of g.
Now, if at some point the wild kangaroo lands at a site visited also by

the tame kangaroo, we have the equation

g1+h(a0)+h(a1)+...+h(am) = Xgh(b0)+h(b1)+...+h(bn). (4..1)

Thus, X = g1+h(a0)+h(a1)+...+h(am)�[h(b0)+h(b1)+...+h(bn)] and we now know
the index ofX . Explicitly, we have

x = 1 + h(a0) + h(a1) + . . . + h(am)� [h(b0) + h(b1) + . . . + h(bn)].

This attack is known as Pollard’s kangaroo method, a set of steps that can
lead to a solution of the DLP (which has connection to the Diffie-Hellman
key exchange and to the ElGamal cryptosystem from Section 3). We will
use the kangaroo method to explain the success of card trick. For now, we
remark that both Pollard’s kangaroos and the card trick’s player (and the
dealer) perform jumps, the former pair through a cyclic group and the latter
pair through a deck of cards. We give an example of the kangaroo method.
Example 3. Let G = Z⇤29 and g = 3, X = 2. We wish to find x such
that 3x = 2 (mod 29). We have j = b

p
|G|c = 5, so let us define the

hash function h : G ! J = {1, 2, 3, 4, 5} as follows, where h repeats
with period 8 = 2s� 2 for s = b

p
|G|c = b

p
29c = 5:

a 1 2 3 4 5 6 7 8 9 10 11 · · · 28
h(a) 1 2 3 4 5 4 3 2 1 2 3 · · · 4

Then, modulo 29 we have

9
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a0 = 3,
a1 = 3 · 3h(3) = 3 · 33 = 34 = 23,
a2 = 34 · 3h(23) = 34 · 33 = 37 = 12,
a3 = 37 · 3h(12) = 37 · 34 = 311 = 15,
a4 = 311 · 3h(15) = 311 · 33 = 314 = 28,
a5 = 314 · 3h(28) = 314 · 34 = 318 = 6,
a6 = 318 · 3h(6) = 318 · 34 = 322 = 22,
and

b0 = 2,
b1 = 2 · 3h(2) = 2 · 32 = 18,
b2 = 2 · 32 · 3h(18) = 2 · 34 = 17,
b3 = 2 · 34 · 3h(17) = 2 · 35 = 22.

Since a6 = b3, we have 322 = 2 · 35 (mod 29). Solving for 2 results
in 317 = 2 (mod 29). Thus, in only 9 calculations, we were able to
determine the index of 3 in this group. You can verify the answer by
using the functionmod in Maple or the function Mod in Mathematica.

4.2 Analysis of Pollard’s Kangaroo Method
To analyze the method, we assume that:
The landing positions of the kangaroos are independent random samples from

a uniform distribution of the elements of G.

Now, suppose that the tame kangaroo jumps a total of c
p

|G| times for
some constant c. Then, at every jump made by the wild kangaroo, there is
a chance

c
p

|G|
|G| =

cp
|G|

that the wild kangaroo lands on the tame kangaroo’s path.
Suppose instead that thewildkangaroomisses the tamekangaroo’spath

at each of
p

|G| jumps. This occurs with probability:

 
1� cp

|G|

!p|G|

=

0
@1 +

1
�
p

|G|
c

1
A

�
p

|G|
c (�c)

⇡ e�c,

10
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using the facts from calculus that
✓

1 +
1
n

◆n

⇡ e,

✓
1� 1

n

◆�n

⇡ e

for large n. We want c to be small compared to
p

|G|, since the largerp
|G|/c, the closer the approximation to e�c. In addition, we do not want

to calculate an infeasible number of jumps. So, the probability of failure is
small when c is sufficiently large, since e�c will be small. For instance,

c 1 2 3 4 5
e�c .3679 .1353 .0498 .0183 .0067

We credit the above analysis to Lacey [2002]; Pollard himself computes a
similar analysis [1978].

4.3 Hash Functions
As promised, we discuss the choice of the hash function h, which es-

tablishes the jump sizes. It may seem a bit arbitrary. Pollard [2000a,438]
states
. . . themethodsworkwellwhen the jumpsof thekangaroosarepowers
of two. . . or powers of another number. We are not claiming that these
are the only good choices. Possibly most sufficiently large sets are
good choices.

He cites Oorschot and Wiener [1999] along with his own work [1978]in
making this statement.
In the exercises, youwill explore a hash function using powers of 2. But

first, we provide an example of a poorly chosen hash function that results
in the method not succeeding.
Example 4. Given G = Z⇤7, which is generated by 3, suppose that we
want to know the value of x for which 3x = 6. If we (foolishly) take
h(y) = 6 for all y 2 G, then a0 = g = 3 and

ai+1 = ai3h(ai) = ai36 = ai.

Since ai = 3 for all i, the tame kangaroo’s sequence is {3, 3, 3, . . .}.
Now, b0 = 6 and

bi+1 = bi3h(bi) = bi36 = bi.

Thus, thewild kangaroo’s sequence is {6, 6, 6, . . .}, and a collisionwill
never occur.

11
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TheDLPwasnot solved, and theblame lies solelywith thehash function.
We need a hash function that inserts some variety into each kangaroo’s
sequence; a kangaroo that jumps in place is not of much use.
Ahash function thatguaranteessuccess is the constant functionh(y) = 1

for all y 2 G = hgi. The tame kangaroo’s sequence is {g, g2, g3, . . .}, so this
kangaroo eventually jumps to each element in the group and hence must
collide with the wild kangaroo at some point. But this hash function is no
better than a guess-and-check method.

4.4 The Secret
Returning to the card trick,we relate it to the kangaroomethodanduse a

similar analysis. Recall that the player’s sequence is initialized by choosing
a number between 1 and 10, followed by counting until the number of
cards dealt is precisely the chosen number. From there, the first key card,
theplayer secretly notes the valueof the card (acesworth 1, face cardsworth
5, and all othersworth face value), with the player continuing to count from
key card to key card. While the player is constructing a sequence through
the deck, the dealer constructs her own sequence in the same manner. The
prediction that the dealer makes of the player’s last secret card is actually
the last card in the dealer’s sequence. Simply put, this is the trick’s secret.
Most of the time, the trick ends with the dealer correctly guessing the

player’s last secret card. Thismeans that at somepoint, either at the last card
or before, the two sequences met at the same card. Just as in the kangaroo
method, we have two sequences running through a set. We can view the
dealer’s and player’s sequences as tame and wild kangaroos, respectively.
Visualizing the two paths becoming one resembles the lowercase Greek
letter �. For this reason, Pollard’s kangaroo method is sometimes referred
to as the �-method. Figure 4 shows an example, using the sequences from
Example 3.

a9 = b6

a8 = b5

a7 = b4

a6 = b3

a5 b2

a4 b1

a3 b0

Figure 4. Graphical illustration of why the Pollard kangaroo method is sometimes called the
�-method.
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Exercises

12. Use G = Z⇤13 with g = 6 and X = 3 to determine x 2 Z>0 such that
gx = 6x = X = 3 (mod 13). Define h : G ! J = {1, 2, 3} by the table
below, where h repeats modulo 4 = 2s� 2 for s = b

p
|G|c = b

p
13c =

3. It may be useful to note that 612 = 1 and 6�1 = 611.

a 1 2 3 4 5 6 7 8 9 10 11 12
h(a) 1 2 3 2 1 2 3 2 1 2 3 2

13. Use G = Z⇤102877 and the generator g found in Exercise 6 to apply Pol-
lard’s kangaroo method to determine x in gx = 7 (mod 102877). Use
either the Maple or the Mathematica code in Appendix A, which take
as inputs a prime p, a generator g, and an integer X 2 Z⇤p . The out-
put is the index of X in Z⇤p for generator g, arrived at by Pollard’s
kangaroo method. (The result can be confirmed using the command
MultiplicativeOrder[g,p,{X}] in Mathematica.)

14. In the computer code inAppendixA, we have s = b
p

|G|c and the hash
function h:

Hash function in code of Appendix A

a 1 2 3 · · · s s + 1 s + 2 · · · 2s � 2 2s � 1 2s 2s + 1 · · ·

h(a) 1 2 3 · · · s s � 1 s � 2 · · · 2 1 2 3 · · ·

Rewrite either the Maple or the Mathematica code using the following
hash function g, where t is chosen such that 2t < s:

New hash function
a 1 2 3 · · · t + 1 t + 2 t + 3 · · · 2t 2t + 1 2t + 2 2t + 3 · · ·

g(a) 20 21 22 · · · 2t 2t�1 2t�2 · · · 21 20 21 22 · · ·

15. Run both the computer code from Appendix A and the revised code
from Exercise 14 using the numbers from Exercise 13. Does either hash
function lead to a quicker collision of the sequences? What did you
compare to come to this conclusion? Rerun thecodeusinga fewdifferent
inputs to determine if one hash function leads to quicker collisions.

16. Prove that if an = bm in Pollard’s kangaroo method, then an+k = bm+k

for all k � 0.
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5. Markov Chains
Thus far, this Module has explored cryptography, the discrete log prob-

lem, and Pollard’s kangaroo method, all of which relate to the card trick
described in the Introduction. In the card trick, the “jump” to the player’s
next key card depends on only the current key card. For instance, suppose
that the player’s first six key cards are 8, 8, 5,K,K, 3 (as in Example 1). The
next key card would be three cards from the 3 card. The important point
is that the next “jump” only depends on the current card, not on the previ-
ous cards in the sequence. This is similar to Pollard’s kangaroo method, in
which the next position depends only on the current position.
Both the card trick and the kangaroo method relate can be represented

in terms of Markov chains, a useful tool to analyze long-term behavior of
models using probability and matrix theory. Below we summarize results
about Markov chains from Grinstead [1997], Kemeny and Snell [1960], and
Roberts [1976], to which we refer the reader for further details and proofs
of the results.

5.1 Results about Markov Chains
A Markov process (or Markov chain) is a system of states in which the

probabilityofmoving fromone state to anotherdependsonlyon the current
state, not on states visited in the past.
We can display the probabilities involved in a transition matrix, with the

previous states corresponding to rows and the next state corresponding to
columns. A simple example for a system with three states is:

T =

 1 2 3
1 .5 0 0.5
2 0 0.5 0.5
3 0.25 0.25 0.5

!
.

Theorem. For a Markov process with transition matrix T and states
1, 2, . . . , n, the probability that the process will be in state j after k
steps given that it started in state i is T k

i,j, for 1  i, j  n.

For aMarkov chainwith transitionmatrix, T , suppose thatwe are given
the probabilities that the process begins in each of the n states as a vector
v = {v1, v2, . . . , vn}. Then vT k is the vector whose jth component gives
the probability that the process is in state j after k steps.
A set of states is a transient set if there is a way in which to leave the set,

and once the process leaves the set, there is zero probability that the process
will return to any state in the set. A state is transient if it is in a transient set.
An absorbing state is a state from which one cannot leave. An absorbing

Markov chain is a Markov chain that contains at least one absorbing state

14
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and a path from each nonabsorbing state to an absorbing state.
An absorbing Markov chain can be simplified to a canonical form, as

shown in Figure 5.

✓ absorbing states nonabsorbing states
absorbing states I 0
nonabsorbing states R Q

◆

Figure 5. Canonical form of a transition matrix for an absorbing Markov chain.

Let there bem absorbing states and n�m nonabsorbing states. Then
• I is them⇥m identity matrix composed of absorbing states,
• 0 is them⇥ (n�m) zero matrix,
• R is an (n�m)⇥mmatrix, and
• Q is an (n �m) ⇥ (n �m) matrix composed of probabilities that the
process moves from a transient state to a transient state.
The fundamental matrix for an absorbing Markov chain with transition

matrix in canonical form isN = (I �Q)�1.
The fundamental matrixN has useful properties:

• The entries of N give the expected value of the number of times the
process is in each nonabsorbing state for each possible starting state.

• The sum of a row i of N is the expected value of the number of steps
before the process is absorbed, assuming that it started in state i.

• NR is thematrixwhose entries are the probabilities that the process ends
in a particular absorbing state for each possible nonabsorbing starting
state.

Exercises

17. Explain why each row of a transition matrix T must sum to 1.

18. An equivalence relation⇠ can be placed on aMarkov chain: Two states,
si and sj , are considered equivalent and we write si ⇠ sj if either i = j
or there is a path from si to sj and a path from sj to si. Verify that ⇠ is
an equivalence relation. This equivalence relation partitions the states
into two equivalence classes.

19. Explain why an absorbing chain cannot have a transition matrix with
the property that T n

ij > 0 for some n and all i, j.

15
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20. For an absorbingMarkov chainwith transitionmatrixT , wherewe have
lim

n!1
Qn = 0, confirm that I �Q has an inverse by finding an explicit

form for it.

21. Describe a scenario in whichNR = [1], the 1⇥ 1 identity matrix.

6. A Simplified Kruskal Count as a
Markov Process

To view the card trick as a Markov process, we must first modify the
deck to lead to more-feasible probability calculations. As with the original
trick, we distinguish only the face value of the card, not the suit or color. We
follow the treatment in Haga and Robins [1997]: To give every value equal
probability, we toss out the face cards; and we assume an infinite random
deck,witheachvalue1 through10havinganequal and independentchance
of being at any position in the deck.
We define the states of the Markov process as corresponding to the

distances—the numbers of cards—between the dealer’s current key card
and the player’s key card that is immediately ahead of it, or zero if they are
the samecard. With cardsvalued1 though10, thisdistance canbe0 through
9, so we have 10 states in theMarkov chain. The state corresponding to the
distance 0 is absorbing, since when the player’s card and the dealer’s card
are the same, their paths have converged and the distance between each
successive card remains 0. We define entryMi,j in the transition matrix to
be the probability that the distance goes from i to j.
We illustrate with an example using a deck of cards whose values are

only 1 and 2.
Example 5. Suppose thatwe have an infinite deck of cardswith values
1 and 2, with each value equally likely at each position and indepen-
dent of values at all other positions. For the card trick, the states of the
Markov chain correspond to the number of cards between the dealer’s
current card and the closest player’s card that is evenwith or ahead of
the dealer’s card, so the states are 0 and 1. The card trick is initialized
by the player secretly choosing a number from {1, 2} and then count-
ing that number of cards to the next key card. We compute each entry
of the transition matrix:
• M0,0: the probability that the distance between the sequences
starts at 0 and stays at 0 after one turn. If the distance is 0, then the
player and dealer are on the same card and will move the same
number of spaces to again be on the same card after one turn.
Therefore,M0,0 = 1.

• M0,1: the probability that the distance between the sequences

16
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starts at 0 and then becomes 1 after a turn. By the explanation
above, this is not possible. So,M0,1 = 0.

• M1,1:the probability that the distance between the sequences starts
at 1 and stays 1 after a turn. If the distance is 1, then the player is
on the card directly after the dealer’s card. The equally probable
options for two successive cards are: 1 1, 1 2, 2 1, 2 2. The first
three cases result in the player and dealer’s sequences colliding on
the next turn. When the dealer and player are on cards 2 2, they
are 1 apart and will stay 1 apart after completing the turn. See the
Figure 6, in which di and pj represent the dealer’s ith card and
player’s jth card, respectively. The cases in the figure confirm that
M1,1 = 1

4
.

1 1 1 2

2 1 2 2

Figure 6. Cases for Example 5 relating toM(1, 1).

• M1,0: the probability that the distance between the sequences
starts at one and then becomes 0 after a turn. By the explanation
above,M1,0 = 3

4
and

M =


1 0
3/4 1/4

�
.

This matrix is already in canonical formwithN = (I �Q)�1 = [4/3].
According to the results about Markov chains, the expected number
of turns until the process is absorbed is 4/3.
Now we explore what happens for a deck of cards with 10 indepen-

dently, identically distributed values. The transition matrixM is a 10⇥ 10
matrix indexed from 0 to 9. From Haga and Robins [1997], we have the
following two theorems.

17
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Theorem. The transition matrix M satisfies

(a) M0,0 = 1 and M0,j = 0, for 0  j  9;

(b) M9,9 =
1

100
and M9,j =

1
10

✓
1 +

1
10

◆
, for 0  j  8;

(c) Mi,j =
✓

1 +
1
10

◆
Mi+1,j, for 0 < i 6= j < 9;

(d) Mi,i =
✓

1 +
1
10

◆
Mi+1,i �

1
10

, for 0 < i < 9.

Proof: (a) Since a distance of 0 is the absorbing state, once the distance
between the cards is 0, it will remain 0. Thus, M0,0 = 1 and M0,j = 0 for
0  j  9.
(b) The only way in which the distance between the cards is 9 and stays

9 is if both the dealer and the player have cards of value 10. This occurs
with probability

�
1
10

� �
1
10

�
. Thus,M9,9 = 1

100
.

The remainder of the proof can be found in Appendix B. ⇤

By induction, Haga and Robins [1997] get a closed form forM :
Theorem.

Mi,i =
1
10

"✓
1 +

1
10

◆10�i

� 1

#
, for 1  i  8;

Mi,j =
1
10

✓
1 +

1
10

◆10�i

, for 0 < j < i < 9;

Mi,j =
1
10

✓
1 +

1
10

◆j�i
"✓

1 +
1
10

◆10�j

� 1

#
, for 0 < i < j  9.

Example 6. We verify the entry for M8,9 by examining all possible
paths that might be taken for the distance between the dealer and
player to go from 8 to 9.
First, we suppose that the player’s key card is 8 cards ahead of the

dealer. The distance will become 9 if either of the following occurs:
• The dealer’s key card is a 9 and the player’s key card is a 10. Since
all card values have equal and independent probability 1/10, this
occurs with probability 1/102.

• Thedealer’skeycard is a10, theplayer’s currentkeycard is a1, and
the player’s next key card is a 10. This case occurswith probability
1/103.
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The sum of these two probabilities is

M8,9 =
1

102
+

1
103

=
1
10

✓
1 +

1
10

◆
1
10

,

as stated in the theorem.
Amore detailed construction of this matrix is done in Haga and Robins

[1997], where there is also a general form for the transition matrixM for a
deck with values 1 throughm.
The closed formof thematrixM is already in canonical form, so and can

calculate the matrices Q, R, and N . Since N provides the most important
output, we explicitly calculate it:

1
11

2
66666666664

20 8 7 6 5 4 3 2 1
10 19 7 6 5 4 3 2 1
10 9 18 6 5 4 3 2 1
10 9 8 17 5 4 3 2 1
10 9 8 7 16 4 3 2 1
10 9 8 7 6 15 3 2 1
10 9 8 7 6 5 14 2 1
10 9 8 7 6 5 4 13 1
10 9 8 7 6 5 4 3 12

3
77777777775

Thus, summing the rows ofN yields a 9⇥ 1matrix:

1
11

[56 57 58 59 60 61 62 63 64]T .

Recall that the summed rows of matrix N yield the expected values of
the number of steps before the process is absorbed for each nonabsorbing
starting state. For instance, if we start in state 1, meaning that the distance
between the dealer’s card is 1 away from the player’s card, we expect
56/11 = 5.09 turns before the distance between the cards becomes 0. Over
the nine nonabsorbing states, the largest such value is 64/11 = 5.81 turns,
for a distanceof 9. Though thedeck is potentially infinite,we expect success
after only a few turns! While this is not a concrete argument for why the
card trick will work a majority of the time, it provides evidence for that
conclusion. For a more mathematically convincing rationale that the trick
works approximately 5/6 of the time, see Lagarias et al. [2009] and Pollard
[2000a].

Exercise

22. Verify that the entry for M7,9 = 1
10

�
1 + 1

10

�2 � 1
10

�
by determining all

possible paths that might be taken for the distance between the dealer
and player to go from 7 to 9.
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7. The Kruskal Count
The trick that we have been discussing is credited to mathematician

Martin D. Kruskal and is sometimes called the Kruskal Count.

7.1 How to Increase the Chance of the Trick’s Success
Further analysis has shown that the dealer can increase the chance of

correctly guessing the player’s last card by
• using two decks of cards instead of one: Using more cards lengthens
the dealer’s and player’s paths, thus increasing the likelihood that the
two paths will eventually meet.

• decreasing the value of the face cards: Decreasing the value of the face
cards increases the average number of cards on the dealer’s and player’s
paths, making the probability of collision greater. This would be the
result of a version of the trick where each face card has value equal to
the number of letters in its name: A jack is worth 4, queen worth 5, and
king worth 4.

• starting the dealer’s sequence with the first card rather than randomly
picking a digit 1 to 10: By starting on the first card (i.e., choosing a secret
number to be 1), the dealer potentially lengthens the dealer’s sequence
of cards, which increases the probability that the player will land on one
of them.

In each of these modifications, we increase the number of jumps by the
kangaroos, thereby making the chance of landing on the same card more
probable. For a rigorous analysis of alterations that improve the probability
of success, see Lagarias et al. [2009].

7.2 Estimating the Chance of Success
TheMarkov chain analysis inSection 6provides an expectedvalue until

success, but not a probability of success. So we develop a second Markov
chain for the card trick, one that allowsus to bound theprobability of failure
of the trick. Lagarias et al. [2009] present a “reduced” version of the chain
that we develop here.
Define the Markov chain as follows. We deal from two independent

decks of cards with independent and equally distributed values from the
set S = 1, 2, . . . , L. The dealer plays the card trick on one deck and the
player uses the other deck. Both choose a number from S; and starting
from the top of their decks, they simultaneously count down the cards
until their number is reached. The card on which each lands is the first key
card for each.
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We consider one card to be behind another if it is closer to the top of its
deck.
• Whichever card is behind the other moves again until it is ahead of the
other deck’s key card. [This is similar to the order of turns in the game of
golf.] As before, the value of the key card is the number of cards counted
until reaching the next key card.

• If both cards are an equal distance from the top of the deck, both the
player and the dealer move onto the next key card in their deck.

We define the distance as the difference between the player’s current key
card and the top of the deck less the difference between the dealer’s current
key card and the top of the deck. The distance can range from�(L� 1) to
L� 1.
The states of the Markov chain are the 2L� 1 distances

�(L� 1),�(L� 2), . . . ,�1, 0, 1, . . . , L� 2, L� 1.

The time until the distance becomes 0 is called the coupling time, which
we denote by ⌧ . We perform the actions described above until theN th card
in one of the decks is passed. We calculate the probability of failure of the
decks to couple by theN th card, i.e., P (⌧ > N).
First, we define the random variable ZL,N to be the total number of key

cards in both decks up to and including theN th card. Thus, our probability
space is ⌦ =

S1
k=0{ZL,N = k}. So,

{! 2 ⌦ | ⌧(!) > N} = {! 2 ⌦ | ⌧(!) > N} \
 1[

k=0

{ZL,N = k}
!

=) {⌧ > N} =
1[

k=0

({⌧ > N} \ {ZL,N = k})

=) P (⌧ > N) =
1X

k=0

P (⌧ > N, ZL,N = k)

= P (⌧ > N | ZL,N = k)P (ZL,N = k)

=
1X

k=0

✓
L� 1

L

◆k

· P (ZL,N = k)

= E

"✓
1� 1

L

◆ZL,N
#

.

Since ZL,N � 2N/L, we have
✓

1� 1
L

◆ZL,N


✓

1� 1
L

◆2N/L

.
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Thus,

E

"✓
1� 1

L

◆ZL,N
#
 E

"✓
1� 1

L

◆2N/L
#

=
✓

1� 1
L

◆2N/L

.

Therefore, P (⌧ > N) 
�
1� 1

L

�2N/L
.

Exercises

23. Suppose L = 5. This means that the two decks are composed of a uni-
form distribution of 5 cards: Ace, 2, 3, 4, and 5. Determine the transition
matrix T of size 5 ⇥ 5 for this Markov chain. Why can’t we use the
analysis performed in Section 6 on this Markov chain?

24. Assuming L = 10 (since a standard deck of cards has card values 1, 2,
3, . . ., 10) and N = 52, compute the probability that the card trick will
succeed.

8. Other Results and Open Problems
The DLP’s difficulty gives rise to several algorithms in cryptography.

Apart fromtheDiffie-Hellmankeyexchangeand theElGamalcryptosystem
(whose security relies on the DLP), other cryptosystems using the DLP
include the U.S. Government’s Digital Signature Algorithm and its elliptic
curve analogue [Teske 2001].
Montenegro and Tetali [2009] provide bounds on the probability of suc-

cess that supplement work by Pollard [2000a].
As is common practice, in our analysis we took a uniformly-distributed

deck of cards. However, a standard deck of 52 cards with the original as-
signment of card values does not have equally likely card values; so our
calculations did not give an exact calculation of the probability trick’s suc-
cess. Pollard himself admits that “An exact calculation seems difficult”
[Pollard 2000b]. He gives an approximate calculation to show that we ex-
pect the trick to succeedwith probability 89.3%, togetherwith a simulation
that admits 85.4% success.
Grime [n.d.] uses a geometric distribution and gives an approximate

probability of success to be 83.88%. Grime also includes several other
interesting results, includingprobabilities on the placement of the final card
in the sequence and howmanypossible different last cards can occur. In his
simulation, 58.39% of the decks had the following property: Independent
of the 10 possible starting positions, the final card reached was the same.
Moreover, taking all 10 starting positions into account, 97.9% of decks will
havenomore than twodifferent possiblefinal cards. We end this discussion
with proof of a result of Pollard that any deck of cards cannot have more
than six different final cards.
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The goal is to show that seven final cards or more is impossible. To do
so, we examine the length of a path through the deck. We show that the
total of theminimumpossible lengths of seven distinct paths is longer than
the total value of all the cards in the entire deck. For a standard 52-card
deck and the usual card values, that total value is

4 · (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 5 + 5 + 5) = 280.

Welookat the 10 sequences formedby the 10 startingpositions. Suppose
that these result in sevendifferentfinal cards. Now, takeone additional turn
with each of these seven cards; doing so will lead beyond the last of the
52 cards, but we just imagine the deck to extend a bit further. The total
length of each card’s extended path is minimized if the path ends right on
the imaginary 53rd card (let it have value 0). The lengths of the extended
paths that end at the 53rd card and start at cards 4 through 10 (which are
the shortest seven such paths) are

53� 4 = 49
53� 5 = 48
53� 6 = 47
53� 7 = 46
53� 8 = 45
53� 9 = 44

53� 10 = 43

for a total length of 322, which is greater than 280. This makes seven paths
impossible.
Six paths have a minimum total length of 322� 49 = 273, so six is the

upper bound on number of final cards possible at the end of the trick.
However, no example of an ordered deck with six final cards appears in
the literature. The minimum total length discussed would involve starting
the six paths on cards 5 through 10 and finishing on cards with values
6, 5, 4, 3, 2, 1where the value 6would appear on the 47th card in the deck,
value 5 on the 48th, etc.

9. Conclusion
Thepurposeof thisModulewas to introducePollard’s kangaroomethod

via an interesting hook (the card trick). The Diffie-Hellman key exchange
and the ElGamal cryptosystem both rely on the difficulty of solving the
DLP, for which the kangaroo method provides an attack. We used Markov
chains to achieve results about the card trick, concluding that it is successful
most of the time. We encourage the reader to attempt the role of dealer and
perform the trick on an audience!
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10. Answers to Exercises
1. Regardless of which secret number (1, 2, . . . , 10) is chosen, the last card
will be the 51st card in the deck, a Queen.

2. Secret Number Last Card
1, 2, 3, 4, 5, 7, 9 fourth Queen

6, 8, 10 first King

3. Not all letters were encrypted, so we skip several in the definition of f
in Table S1. Quote: “Nothing but heaven itself is better than a friend
who is really a friend.” —Plautus

x A B D E F G H I L N O P R S T U V W

f(x) W R X F B D A H M V L O T Q S Z E C

Table S1. Solution for Exercise 3.

4. |hxi| 2 {1, 2, 11, 22}.
5. We need to find x such that x1 6= 1, x2 6= 1, x11 6= 1, but x22 = 1. The
acceptable x are 5, 7, 10, 11, 14, 15, 17, 19, 20, and 21. The Mathemat-
ica commandSolve[x^11==22,{x},Modulus->23]gives these values,
plus 22, which does not satisfy x2 6= 1.

6. Since |Z⇤102877| = 102866 = 22 · 3 · 8573, we need to find x such that
x 6= 1, x2 6= 1, x3 6= 1, x4 6= 1, x6 6= 1, x12 6= 1, x8573 6= 1,, x17146 6= 1,
x25719 6= 1,, x34292 6= 1, and x51428 6= 1, but x102866 = 1. Using Maple or
Mathematica, it can be verified that x = 2 qualifies (and of course is the
smallest such).

7. Thepublic information isX = 8,Y = 19, p = 23, andg = 5. Theprivate
information is Y x = 2 = Xy. This can be calculated if one can solve
19x = 2 for x or 8y = 2 for y with computations in Z⇤23.

8. Bp�agab = (gb)p�agab = gbp�ab+ab = (gp)b = 1b = 1.

9. B = 1664 and C = 1103. The ciphertext is (1664, 1103).
10. m = 108.
11. The public information is p, g, ga, B = gb, and C = mgab. The private

information is a, b, andm. Since we know g, gb, and p, if we can solve
the DLP, we can compute a and b, whichwill lead tom. This is the same
as the Diffie-Hellman key exchange in which an eavesdropper tries to
solve for x if Y and Y x are known.
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12. a0 = 6,
a1 = 6 · 62 = 63 = 8,
a2 = 63 · 62 = 65 = 2,

b0 = 4,
b1 = 4 · 62 = 1,
b2 = 4 · 62 · 6 = 4 · 63 = 6.

The collision occurs when a0 = 6 = b2. Thus, 6 = 4 · 63 and 6�2 = 4.
Since 6�1 = 611, we have 4 = 622 = 612+10 = 612610 = 610.

13. 86843.

14. The newMaple code with changes is shown in Figure S1 and theMath-
ematica code in Figure S2.

Figure S1. Revised Maple code for solution to Exercise 14, with changes in red (light gray).

15. Running Index2 yields the same answer of 86843 that Index provided.
The sequences ai and bj are longer for Index2. Running each program
on the numbers from Example 3 results in sequences of equal length.
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Index�p_, g_, X_� :� Module��s, Collision, L1, L2, p1, p2, i, m, h, n, f, u, v�,
s � Floor�Sqrt�p��;
Collision � False;
L1 � �g�;
L2 � �X�;
p1 � �1�;
p2 � �0�;
u � 0;
v � 0;
i � 1;
While��Collision �� False && i � p�,�If�Intersection�L1, L2� � ��,�u � Flatten�Position�L1, Intersection�L1, L2���1����;

Collision � True�, Collision � False�;
If�Intersection�L1, L2� � ��,
v � Flatten�Position�L2, Intersection�L1, L2���1�����;

m � Mod�L1��i��, 2 � s � 2�;
If�m � 0, h � 2, If�m � s, h � m, h � 2 � s � m��;
L1 � Append�L1, Mod��Last�L1� � g^h�, p��;
p1 � Append�p1, Last�p1� � h�;
n � Mod�L2��i��, 2 � s � 2�;
If�n � 0, f � 2, If�n � s, f � n, f � 2 � s � n��;
L2 � Append�L2, Mod��Last�L2� � g^f�, p��;
p2 � Append�p2, Last�p2� � f�;
i � i � 1��;

Print�"tame jump locations: ", L1�;
Print�"wild jump locations: ", L2�;
Print�"tame powers of p: ", p1�;
Print�"wild powers of p: ", p2�;
Print�"tame intersection location: ", u�;
Print�"wild intersection location: ", v�;
If �i � p,�If ��p1��u����1�� � p2��v����1�� � 0�,�Print�"index of X for generator g: ",

p1��u����1�� � p2��v����1����,�Print�"index of X for generator g: ",
p � 1 � p1��u����1�� � p2��v����1������,

Print�
"there is no such index"�;��

Figure S2. RevisedMathematica code for solution to Exercise 14, with changes in red (light gray).
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As another example, it can be verified that 1987 is primewith gener-
ator 2. Suppose that we want to find the index of 1000. Both programs
Index2 and Index2A yield the answer 21356 = 1000, but again Index2
shows longer sequences for ai and bj .

16. Suppose that an = bm; then an+1 = angh(an) = bmgh(bm) = bm+1. Now,
suppose that an+k = bm+k for some k � 1. Then

an+k+1 = an+kg
h(an+k) = bm+kg

h(bm+k) = bm+k+1.

17. The columns of a transition matrix T represent all possible states of the
process. Given that the process is currently in row i, it either stays in
state i or moves to one of the other states by the next move. As such,X

j

Ti,j = 1.

18. Symmetric: If si ⇠ sj then sj ⇠ si by definition. Reflexive: Addition-
ally, si ⇠ si by definition. Transitive: For si ⇠ sj and sj ⇠ sk, there is a
path from si to sj to sk and a path from sk to sj to si, so si ⇠ sk.

19. In an absorbingMarkov chain’s transitionmatrix, theremust be an entry
of 1 somewhereandall otherentries in that rowmustbe0. Foranypower
of this matrix, the same argument will hold.

20. (I �Q)�1 =
1X

n=0

Qn. Since lim
n!1

Qn = 0 (because the sum converges),

(I �Q)(I + Q + Q2 + Q3 + · · · ) = I.

21. Since NR is a matrix whose entries represent the probabilities that the
process ends in a particular absorbing state for each nonabsorbing state,
NR = [1]means that there is one nonabsorbing state in the process.

22. Begin by supposing that the player’s card is 7 cards ahead of the dealer’s
card. For the distance to go from 7 to 9, one of the followingmust occur:

• The dealer’s current card is an 8 and the player’s current card is a 10.
The probability of this occurring is (1/10)2.

• The dealer’s current card is a 9 and the player’s current card is 1. Since
distance is defined by a player’s card being ahead of the dealer’s card,
this turn is not complete until the player moves again. For the distance
to be 9, the player’s card must be a 10. The probability is (1/10) (1/10)2.

• The dealer’s current card is a 10 and either
– the player’s next cards are 1, 1, and 10; or
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– the player’s next cards are 2 and 10.

This probability is 1
10

h�
1
10

�3 +
�

1
10

�2i.
In total,M7,9 = 1

100

�
1 + 1

10

�2.

23. T =

0
BBB@

0 1 2 3 4
0 1/5 8/25 6/25 4/25 2/25
1 1/5 1/5 1/5 1/5 1/5
2 1/5 2/5 1/5 1/5 0
3 1/5 2/5 2/5 0 0
4 1/5 2/5 1/5 1/5 0

1
CCCA.

This is not an absorbing Markov chain.

24. P ({⌧ > N}) 
�
1� 1

10

�104/10 ⇡ 0.334. So, the probability of success is
at least 1� 0.334 = 0.666.

11. Appendix A: Computer Code
This code in Figures A1 and A2 is for use with Exercises 13–15.

12. Appendix B: Continuation of Proof
We continue expositing the proof from Haga and Robins [1997] of the

first of their Theorems in Section 6.
First, we introduce some notation. Define sequences (yi) and (xi) to be

the dealer’s and player’s secret cards, respectively. Let dk be the distance
between the dealer’s current card yi and the player’s next-closest card ap-
pearing after the dealer’s card in the deck, xj .
To prove part (b), we assume that dk = 9 and dk+1 = j < 9. There are

two ways in which this can happen:
• Either the dealer’s card has face value 9� j, with probability 1/10; or
• the dealer’s card has face value 10 and the player’s card has face value

j + 1, with probability 1/100.
Thus,M9,j = 1

10

�
1 + 1

10

�
.

ForMi,j we will compare the Figures B1 and B2:
Now, we claim that the difference between computingMi+1,j depicted

in the Figure B1 andMi,j depicted in Figure B2 is the card just before yk+1,
which Haga and Robins call “star” and we denote by ⇤.
If ⇤ in Figure B2 is vacant, then the player’s cards can occupy any of the

empty boxes betweenxl and yk+1 in the samenumber ofways as FigureB1.
Thus, when ⇤ is vacant,Mi,j = Mi+1,j .
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>Index:=proc(p,g,x)%Input prime p, generator, g, and element x
local s,L1,L2,p1,p2,i,k,m,n,h,f,z,y%identify local variables
s:= floor(sqrt (p));%s = b

p
|G|c where |G| = p

L1:=[g]; L2:=[x];%L1 and L2 will record the sequences (ai) and (bi)
p1:=[1]; p2:=[0];%p1 and p2 will keep track of the power of g for each ai and bi

as a list
i=1; k:=0;%starting values for other variables to be used in loops
while k=0 do
for z in L1 do
for y in L2 do
if (k=0) and (z=y) then k:=1%if z = y then there is a collision
print(z,y); member(z,L1,‘u’);member(y,L2,‘v’);
break; end if;
end do
end do;

m:=mod(op(i,L1),2s-2);%Determine g(ai)
if m=0 then h:=2;
elif m  s then h:=m;
else h:= 2s-m; end if;
L1:=[op(L1),mod(op(i,L1)· gh,p)]; p1:=[op(p1),op(i,p1)+h];

n:=mod(op(i,L2),2s-2);%Determine g(bi)
if n=0 then f:=2;
elif n  s then f:=n;
else f:=2s-n; end if;
L2:=[op(L2), mod(op(i,L2)·gf ,p)]; p2:=[op(p2), op(i,p2)+f];
i:=i+1;
end do;
print(L1); print(L2); print(p1); print(p2);
if op(u,p1)-op(v,p2)>0 then print(op(u,p1)-op(v,p2));
else print(p-1+(op(u,p1)-op(v,p2))); end if;
end proc;

Figure A1. Maple code for Pollard’s kangaroo method.
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Index�p_, g_, X_� :� Module��s, Collision, L1, L2, p1, p2, i, m, h, n, f, u, v�,
s � Floor�Sqrt�p��;
Collision � False;
L1 � �g�;
L2 � �X�;
p1 � �1�;
p2 � �0�;
u � 0;
v � 0;
i � 1;
While��Collision �� False && i � p�,�If�Intersection�L1, L2� � ��,�u � Flatten�Position�L1, Intersection�L1, L2���1����;

Collision � True�, Collision � False�;
If�Intersection�L1, L2� � ��,
v � Flatten�Position�L2, Intersection�L1, L2���1�����;

m � Mod�L1��i��, 2 � s � 2�;
If�m � 0, h � 2, If�m � s, h � m, h � 2 � s � m��;
L1 � Append�L1, Mod��Last�L1� � g^h�, p��;
p1 � Append�p1, Last�p1� � h�;
n � Mod�L2��i��, 2 � s � 2�;
If�n � 0, f � 2, If�n � s, f � n, f � 2 � s � n��;
L2 � Append�L2, Mod��Last�L2� � g^f�, p��;
p2 � Append�p2, Last�p2� � f�;
i � i � 1��;

Print�"tame jump locations: ", L1�;
Print�"wild jump locations: ", L2�;
Print�"tame powers of p: ", p1�;
Print�"wild powers of p: ", p2�;
Print�"tame intersection location: ", u�;
Print�"wild intersection location: ", v�;
If �i � p,�If ��p1��u����1�� � p2��v����1�� � 0�,�Print�"index of X for generator g: ",

p1��u����1�� � p2��v����1����,�Print�"index of X for generator g: ",
p � 1 � p1��u����1�� � p2��v����1������,

Print�
"there is no such index"�;��

Figure A2. RevisedMathematica code for solution to Exercise 14, with changes in red (light gray).
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yk · · ·| {z }
dk=i+1

xl · · · yk+1 · · ·| {z }
dk+1=j

xm

Figure B1.

yk · · ·| {z }
dk=i

xl · · · ⇤ yk+1 · · ·| {z }
dk+1=j

xm

Figure B2.

When a player’s card occupies ⇤, the player’s sequence of cards would
have followed a path described when dk = i + 1 and dk+1 = j, but with
one additional turn, since some xn lands on ⇤.
When ⇤ is occupied,Mi,j = 1

10
Mi+1,j .

In total,

Mi,j =
✓

1 +
1
10

◆
Mi+1,j, for i 6= j and 0, 9 6= i.

Last, we examine part (d) from the theorem. The paths in which dk = i + 1
and dk+1 = i include the cases:
• yk has face value 1, which occurs with probability 1/10.
• Any other path can bemodified to work in the case where dk = dk+1 = i
by forcing yk to have face value one less. This accounts for all cases in
which yk 6= 10 and we haveMi,i = Mi+1,i � 1

10
.

• yk has face value 10; we again examine a path traveled by the player’s
cards in which dk = i + 1 and dk+1 = i. Say this path has yk = p. Then
wemodify the path of the player’s cards by inserting a card of face value
10� p + 1 as the first card in the player’s path and all other cards having
an unchanged face value (see example). So, this means when yk = 10,
Mi,i = 1

10
Mi+1,i. In total,Mi,i =

�
1 + 1

10

�
Mi+1,i � 1

10
.

Example for Proof: We want to show explicitly

M7,7 =
✓

1 +
1
10

◆
M8,7 �

1
10

.

First, we label the paths in which dk = 8 and dk+1 = 7:

yk · · ·| {z }
dk=8

xl · · · yk+1 · · ·| {z }
dk+1=7

xl+m

Path 1: yk = 1 and xl = xl+m

Path 2: yk = 9 and xl = 8
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Path 3: yk = 10 and xl = 1, xl + 1 = 8
Path 4: yk = 10 and xl = 9
Now,wemodify these paths in the twowaysdescribed in the proof

above.
(a) Decrease yk by 1 for yk 6= 1. So, we have the paths given below.

Path 2a: yk = 8 and xl = 8
Path 3a: yk = 9 and xl = 1, xl+1 = 8
Path 4a: yk = 9 and xl = 9
Since the values of the cards are equally distributed throughout the
deck, the probabilities of paths 2a, 3a, and 4a are equal to the proba-
bilities of paths 2, 3, and 4, respectively.
(b) Change yk to 10 and insert extra xj . The paths are then,

Path 1b: yk = 10 and xl = 10
Path 2b: yk = 10 and xl = 2, xl+1 = 8
Path 3b: yk = 10 and xl = 1, xl+1 = 1, xl+2 = 8
Path 4b: yk = 10 and xl = 1, xl+1 = 9
Since we have inserted an additional card into the path, the probabil-
ities of paths 1b, 2b, 3b, and 4b are each 1

10
times the probability of

paths 1, 2, 3, and 4, respectively.
In total, we haveM7,7 =

�
1 + 1

10

�
M8,7 � 1

10
.
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