Review Sheet II

Solutions

March 16, 2020
I. R is symmetric, so $x R y$ implies $y R x$. R is antisymmetric so $x R y$ and $y R x$ implies $x=y$. Hence the only possible elements in R are $x R x$. R is the set of ordered pairs for which both hold. So it is one of the 8 subsets which contain some of the elements (x, x), is perhaps (a, a) and (c, c) etc..

II Take care of the lower inequalities by subtracting 2 from each of the 3 variables(donuts) and get $\binom{21}{19}$ We now have $\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}=19$ and $\mathrm{y}_{1} \leq 5, \mathrm{y}_{2} \leq 8$ and $\mathrm{y}_{3} \leq 23$ We solve first with $\mathrm{y}_{1} \geq 6$. Get $\binom{15}{13}$ Then $\mathrm{y}_{2} \geq 9$ Get $\binom{12}{10}$ Then $\mathrm{y}_{3} \geq 20 \operatorname{Get}\binom{1}{-1}=0$. Next $\mathrm{y}_{1} \geq 6$ and $\mathrm{y}_{2} \geq 9$ Get $\binom{6}{4}$ The rest are 0 . Ans $=\binom{21}{19}-\left(\binom{15}{13}+\binom{12}{10}+0\right)+\left(\binom{6}{4}+0+0\right)-0$

III $1000-(31+10)+2$. Inclusion exclusion. 31^{2} is the last square less than 1000.10^{3} is the last cube less than or equal to 1000 . Only 2^{6} and 3^{6} are both.
VI. Expand $(1+\mathrm{x})^{n}$ in the binomial expansion. Take a derivative. Substitute $\mathrm{x}=-1$.
V. Expand $(\mathrm{x}-1)^{n}$ in the binomial expansion and substitute $\mathrm{x}=3$.

VI $\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}+\binom{n-3}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-2}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}$ using Pascal's identity in every step.
VII. a. D_{8} b. $\binom{8}{3} \mathrm{D}_{5}$ c. $8!-\mathrm{D}_{8}$ d. $8!-\mathrm{D}_{8}\binom{8}{1} \mathrm{D}_{7}$ e. $\mathrm{D}_{8} / 8!$
VIII. $\left(1 /\left(1-\mathrm{x}^{3}\right)\right)\left(\mathrm{x} /\left(1-\mathrm{x}^{2}\right)\right)\left(\left(1-\mathrm{x}^{6}\right) /(1-\mathrm{x})\right)$

IX h_{n} stands for the number for a 1 by n board. $\mathrm{h}_{n}=3 \mathrm{~h}_{n-1}+3 \mathrm{~h}_{n-2} . \mathrm{h}_{1}=4, \mathrm{~h}_{2}=3$. Then $\mathrm{h}_{3}=21$. Explanation: If the first is red there are 3 choices for the second and then h_{n-2} from there. If the first is blue, green or white, there are h_{n-1} choices for the rest.
X. Divide $1-x-x^{2}$ into 1 to get $1+x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\ldots$. Fibonacci numbers. Actually f_{n} is the coefficient of x^{n-1}

